PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
PRIN.OF HIGHWAY ENGINEERING&TRAFFIC ANA.
7th Edition
ISBN: 9781119610526
Author: Mannering
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 2, Problem 19P
To determine

The unloaded braking efficiency.

Blurred answer
Students have asked these similar questions
A 11120 N car is designed with a 310 cm wheelbase. The center of gravity is located 60 cm above the pavement and 105 cm behind the front axle. If the coefficient of road adhesion is 0.6, what is the maximum tractive effort that can be developed if the car is (a) front-wheel drive and (b) rear-wheel drive?  From the previous question, how far back from the front axle would the center of gravity have to be to ensure that the maximum tractive effort developed for front- and rear-wheel drive options is equal?
A car traveling at 45 mph on a poor, wet pavement has a braking efficiency of 87%. The brakes were applied 100 feet before hitting an obstacle in the road. The road is uphill for 40 feet and then is level for the remainder of the way. The car had a maximum coefficient of road adhesion in the sloped portion of the poor, wet roadway and but as soon as it started going on the level portion its coefficient of road adhesion reduced to 0.3. Assuming that the car struck the obstacle at 30 mph, what was the grade of the hill? Assume practical stopping distance equation applies.
A level test track has a coefficient of road adhesion of 0.80, and a car being tested has a coefficient of rolling friction that is approximated as 0.018 for all speeds. The vehicle is tested unloaded and achieves the theoretical minimum stop in 180 ft (from brake application). The initial speed was 60 mi/h. Ignoring aerodynamic resistance, what is the unloaded braking efficiency?
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning