Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19.1, Problem 19.8P
A simple pendulum consisting of a bob attached to a cord of length
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
As shown in the Fig. 3, the CM of a cylinder of mass m and radius R is connected to the top of hoop of mass m by a spring. The spring constant is assumed to be known and it is denoted by k. At a given moment the system is slightly compressed and then suddenly released. After the release, both rigid objects roll without slipping. Determine the angular frequency of the resulting oscillation. It is assumed that the spring remains horizontal throughout the motion. Figure 3: Coupled Oscillator
A simple pendulum consisting of a bob attached to a cord of length l = 800 mm oscillates in a vertical plane. Assuming simple harmonic motion and knowing that the bob is released from rest when 0= 6°, determine (a) the frequency of oscillation, (b) the maximum velocity of the bob.
A 11-lb block is attached to the lower end of a spring whose upper end is fixed and vibrates with a period of 7.2 s. Knowing that the constant k of a spring is inversely proportional to its length (e.g., if you cut a 10 lb/in. spring in half, the remaining two springs each have a spring constant of 20 lb/in.), determine the period of a 7-lb block that is attached to the center of the same spring if the upper and lower ends of the spring are fixed.
Chapter 19 Solutions
Vector Mechanics For Engineers
Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - A particle moves in simple harmonic motion....Ch. 19.1 - Prob. 19.3PCh. 19.1 - Prob. 19.4PCh. 19.1 - Prob. 19.5PCh. 19.1 - A 20-lb block is initially held so that the...Ch. 19.1 - Prob. 19.7PCh. 19.1 - A simple pendulum consisting of a bob attached to...Ch. 19.1 - Prob. 19.9PCh. 19.1 - A 5-kg fragile glass vase is surrounded by packing...
Ch. 19.1 - Prob. 19.11PCh. 19.1 - Prob. 19.12PCh. 19.1 - Prob. 19.13PCh. 19.1 - Prob. 19.14PCh. 19.1 - Prob. 19.15PCh. 19.1 - Prob. 19.16PCh. 19.1 - Prob. 19.17PCh. 19.1 - Prob. 19.18PCh. 19.1 - Prob. 19.19PCh. 19.1 - Prob. 19.20PCh. 19.1 - A 50-kg block is supported by the spring...Ch. 19.1 - Prob. 19.22PCh. 19.1 - Two springs with constants k1and k2are connected...Ch. 19.1 - Prob. 19.24PCh. 19.1 - Prob. 19.25PCh. 19.1 - Prob. 19.26PCh. 19.1 - Prob. 19.27PCh. 19.1 - From mechanics of materials it is known that when...Ch. 19.1 - Prob. 19.29PCh. 19.1 - Prob. 19.30PCh. 19.1 - Prob. 19.31PCh. 19.1 - Prob. 19.32PCh. 19.1 - Prob. 19.33PCh. 19.1 - Prob. 19.34PCh. 19.1 - Using the data of Table 19.1, determine the period...Ch. 19.1 - Prob. 19.36PCh. 19.2 - Prob. 19.37PCh. 19.2 - Prob. 19.38PCh. 19.2 - A 6-kg uniform cylinder can roll without sliding...Ch. 19.2 - A 6-kg uniform cylinder is assumed to roll without...Ch. 19.2 - Prob. 19.41PCh. 19.2 - Prob. 19.42PCh. 19.2 - A square plate of mass m is held by eight springs,...Ch. 19.2 - Prob. 19.44PCh. 19.2 - Prob. 19.45PCh. 19.2 - Prob. 19.46PCh. 19.2 - Prob. 19.47PCh. 19.2 - Prob. 19.48PCh. 19.2 - Prob. 19.49PCh. 19.2 - Prob. 19.50PCh. 19.2 - A thin homogeneous wire is bent into the shape of...Ch. 19.2 - A compound pendulum is defined as a rigid body...Ch. 19.2 - Prob. 19.53PCh. 19.2 - Prob. 19.54PCh. 19.2 - Prob. 19.55PCh. 19.2 - Two uniform rods each have a mass m and length I...Ch. 19.2 - Prob. 19.57PCh. 19.2 - A 1300-kg sports car has a center of gravity G...Ch. 19.2 - A 6-lb slender rod is suspended from a steel wire...Ch. 19.2 - A uniform disk of radius r=250 mm is attached at A...Ch. 19.2 - Two uniform rods, each of weight W=24 lb and...Ch. 19.2 - Prob. 19.62PCh. 19.2 - Prob. 19.63PCh. 19.2 - Prob. 19.64PCh. 19.2 - Prob. 19.65PCh. 19.2 - A uniform equilateral triangular plate with a side...Ch. 19.2 - Prob. 19.67PCh. 19.2 - Prob. 19.68PCh. 19.3 - Prob. 19.69PCh. 19.3 - Prob. 19.70PCh. 19.3 - Prob. 19.71PCh. 19.3 - Prob. 19.72PCh. 19.3 - Prob. 19.73PCh. 19.3 - Prob. 19.74PCh. 19.3 - Prob. 19.75PCh. 19.3 - Prob. 19.76PCh. 19.3 - A uniform disk of radius r and mass m can roll...Ch. 19.3 - Prob. 19.78PCh. 19.3 - Prob. 19.79PCh. 19.3 - Prob. 19.80PCh. 19.3 - A slender 10-kg bar AB with a length of l=0.6 m is...Ch. 19.3 - Prob. 19.82PCh. 19.3 - Prob. 19.83PCh. 19.3 - Prob. 19.84PCh. 19.3 - A homogeneous rod of weight W and length 2l is...Ch. 19.3 - Prob. 19.86PCh. 19.3 - Prob. 19.87PCh. 19.3 - Prob. 19.88PCh. 19.3 - Prob. 19.89PCh. 19.3 - Prob. 19.90PCh. 19.3 - Two 6-lb uniform semicircular plates are attached...Ch. 19.3 - Prob. 19.92PCh. 19.3 - The motion of the uniform rod AB is guided by the...Ch. 19.3 - Prob. 19.94PCh. 19.3 - Prob. 19.95PCh. 19.3 - Prob. 19.96PCh. 19.3 - Prob. 19.97PCh. 19.3 - Prob. 19.98PCh. 19.4 - Prob. 19.99PCh. 19.4 - Prob. 19.100PCh. 19.4 - Prob. 19.101PCh. 19.4 - Prob. 19.102PCh. 19.4 - Prob. 19.103PCh. 19.4 - Prob. 19.104PCh. 19.4 - Prob. 19.105PCh. 19.4 - Prob. 19.106PCh. 19.4 - Prob. 19.107PCh. 19.4 - The crude-oil pumping rig shown is driven at 20...Ch. 19.4 - Prob. 19.109PCh. 19.4 - Prob. 19.110PCh. 19.4 - Prob. 19.111PCh. 19.4 - Prob. 19.112PCh. 19.4 - Prob. 19.113PCh. 19.4 - Prob. 19.114PCh. 19.4 - Prob. 19.115PCh. 19.4 - Prob. 19.116PCh. 19.4 - Prob. 19.117PCh. 19.4 - Prob. 19.118PCh. 19.4 - Prob. 19.119PCh. 19.4 - Prob. 19.120PCh. 19.4 - Prob. 19.121PCh. 19.4 - Prob. 19.122PCh. 19.4 - Prob. 19.123PCh. 19.4 - Prob. 19.124PCh. 19.4 - Prob. 19.125PCh. 19.4 - A small trailer and its load have a total mass of...Ch. 19.5 - Prob. 19.127PCh. 19.5 - Prob. 19.128PCh. 19.5 - Prob. 19.129PCh. 19.5 - Prob. 19.130PCh. 19.5 - Prob. 19.131PCh. 19.5 - Prob. 19.132PCh. 19.5 - Prob. 19.133PCh. 19.5 - Prob. 19.134PCh. 19.5 - Prob. 19.135PCh. 19.5 - Prob. 19.136PCh. 19.5 - Prob. 19.137PCh. 19.5 - A 0.9-kg block B is connected by a cord to a...Ch. 19.5 - Prob. 19.139PCh. 19.5 - Prob. 19.140PCh. 19.5 - Prob. 19.141PCh. 19.5 - Prob. 19.142PCh. 19.5 - Prob. 19.143PCh. 19.5 - Prob. 19.144PCh. 19.5 - Prob. 19.145PCh. 19.5 - Prob. 19.146PCh. 19.5 - Prob. 19.147PCh. 19.5 - Prob. 19.148PCh. 19.5 - A simplified model of a washing machine is shown....Ch. 19.5 - Prob. 19.150PCh. 19.5 - Prob. 19.151PCh. 19.5 - Prob. 19.152PCh. 19.5 - Prob. 19.153PCh. 19.5 - Prob. 19.154PCh. 19.5 - Prob. 19.155PCh. 19.5 - Prob. 19.156PCh. 19.5 - Write the differential equations defining (a) the...Ch. 19.5 - Write the differential equations defining (a) the...Ch. 19 - Prob. 19.159RPCh. 19 - Prob. 19.160RPCh. 19 - Prob. 19.161RPCh. 19 - Prob. 19.162RPCh. 19 - Prob. 19.163RPCh. 19 - Prob. 19.164RPCh. 19 - A 4-lb uniform rod is supported by a pin at O and...Ch. 19 - Prob. 19.166RPCh. 19 - Prob. 19.167RPCh. 19 - Prob. 19.168RPCh. 19 - Prob. 19.169RPCh. 19 - Prob. 19.170RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A machine of mass 75 kg is mounted on springs and is fitted with a dashpot to damp out vibrations. There are three springs each of stiffness 10 N/mm and it is found that the amplitude of vibration diminishes from 38.4 mm to 6.4 mm in two complete oscillations. Assuming that the damping force varies as the velocity, determine : 1. the resistance of the dash-pot at unit velocity ; 2. the ratio of the frequency of the damped vibration to the frequency of the undamped vibration ; and 3. the periodic time of the damped vibration.arrow_forwardA small collar of mass 1 kg is rigidly attached to a 3-kg uniform rod of length L = 750 mm. Determine (a) the distance d to maximize the frequency of oscillation when the rod is given a small initial displacement, (b) the corresponding period of oscillation.arrow_forwardA slider crank mechanism, FIG. A5, consists of a piston of 2.5 kg mass and a crank of 50 mm eccentricity. If the piston moves with simple harmonic motion at a frequency of 15 Hz determine (a) the maximum kinetic energy of the piston to 2 sig. fig., (b) the kinetic energy of the piston when e = 60° to 2 sig. fig..arrow_forward
- A body weighing 150 N, moves with simple harmonic motion. The velocity and acceleration of the body when it is 200 mm from the centre of oscillation, are 5 m/s and 20 m/s? respectively. Determine (a) amplitude of motion and (b) no. of vibrations per minute 11 A helical spring has a stiffness of 1 N/mm. What mass should be hung on it, so that it may oscillate with a periodic time of 1:5 second ? Ans(57 kg) 12arrow_forwardA 5-kg collar Cis released from rest in the position shown and slides without friction on a vertical rod until it hits a spring with a constant of k= 720 N/m that it compresses. The velocity of the collar is reduced to zero, and the collar reverses the direction of its motion and returns to its initial position. The cycle is then repeated. Determine (a) the period of the motion of the collar, (b) the velocity of the collar 0.4 s after it was released. (Note: This is a periodic motion, but it is not simple harmonic motion.)arrow_forwardA connecting rod is supported by a knife-edge at point A; the period of its small oscillations is observed to be 0.87 s. The rod is then inverted and supported by a knife edge at point B and the period of its small oscillations is observed to be 0.78 s. Knowing that ra + rb=10 in. determine(a) the location of the mass center G. (b) the centroidal radius of gyration k.arrow_forward
- An 800-g rod AB is bolted to a 1.2-kg disk. A spring of constant k = 12 N/m is attached to the center of the disk at A and to the wall at C . Knowing that the disk rolls without sliding, determine the period of small oscillations of the system.arrow_forwardProblem 5.118 L2 02 The simple pendulum shown oscillates in the vertical plane (the plane of the figure) as the pendulum cord is being steadily retracted through the opening at O with a constant speed v. Consider the oscillations of the pendulum between positions O and ®, where 8, and 0, are the maximum swing angles of the pendulum at O and O, respectively. Let L, and L, denote the lengths of the cord at 0 and ®, respectively, and let m denote the L1 mass of the pendulum bob. Neglecting all forces except gravity and the tension in the cord, determine the angular impulse relative to O provided to the pendulum bob in going from 0 to 2. Figure P5.118arrow_forwardA 6-lb slender rod is suspended from a steel wire that is known to have a torsional spring constant K=1.5 ft.lb/rad. If the rod is rotated through 180° about the vertical and released, determine (a ) the period of oscillation, (b ) the maximum velocity of end A of the rod.arrow_forward
- Α Ο CH B d PROBLEM 19.50 A small collar of mass 1 kg is rigidly attached to a 3-kg uniform rod of length L = 750 mm. Determine (a) the distance d to maximize the frequency of oscillation when the rod is given a small initial displacement, (b) the corresponding period of oscillation.arrow_forwardWith complete solution please. Thanksarrow_forwardA 1300-kg sports car has a center of gravity G located a distance h above a line connecting the front and rear axles. The car is suspended from cables that are attached to the front and rear axles as shown. Knowing that the periods of oscillation are 4.04 s when L = 4 m and 3.54 s when L = 3 m, determine h and the centroidal radius of gyration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License