Manufacturing Engineering & Technology
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 19, Problem 45QTP

In Fig. 19.2, what flight angle, θ, should be used so that one flight translates to a distance equal to the barrel diameter with each revolution?

Blurred answer
Students have asked these similar questions
Question 3 The diameter of an extruder barrel is 65 mm and its length is 1.75 m. The screw rotates at 55 rev/min. The screw channel depth is 5.0 mm, and its flight (helix) angle is 18°. The head pressure at the die end of the barrel is 5x10° Pa. The viscosity of the polymer melt is given as 100 Pa-s. Calculate the volume flow rate of polymer in the barrel. The drag flow is given by the equation: Qa = 0.5 n² D² N d̟ sinp cosp The back pressure flow is given by the equation: Pn D dễ sin²4 Qb 127L The details of the extruder screw are given in figure 3.1 W. channel width Perpendicular Pitch Helix ( p angle () D Channel depth de |Axial |light| width Axial channel width Perpendicular flight -Direction of mass flow- Figure 3.1. Schematic illustration of a typical "Archimedean" extruder screw. width Root diameter diameter
Review Problems The extrusion die for a polyethylene parison used in blow molding has a mean diameter of 18.0 mm. The size of the ring opening in the die is 2.0 mm. The mean diameter of the parison is observed to swell to a size of 21.5 mm after exiting the die orifice. If the diameter of the blow molded container is to be 150 mm, determine (a) the corresponding wall thickness of the container and (b) the wall thickness of the parison.
An extrusion operation is used to produce a parison whose mean diameter = 27 mm. The inside and outside diameters of the die that produced the parison are 18 mm and 22 mm, respectively. If the minimum wall thickness of the blow-molded container is to be 0.40 mm, what is the maximum possible diameter of the blow mold?

Chapter 19 Solutions

Manufacturing Engineering & Technology

Ch. 19 - Describe runner, gate, sprue, and well.Ch. 19 - Describe the advantages of cold-forming plastics...Ch. 19 - What are the characteristics of filament-wound...Ch. 19 - Describe the methods that can be used to make...Ch. 19 - What is pultrusion? Pulforming?Ch. 19 - How are very thin plastic film produced?Ch. 19 - What process is used to make foam drinking cups?Ch. 19 - If a polymer is in the form of a thin sheet, is it...Ch. 19 - How are polymer fibers made? Why are they much...Ch. 19 - What are the advantages of coextrusion?Ch. 19 - Explain how latex rubber gloves are made.Ch. 19 - Describe the features of a screw extruder...Ch. 19 - Explain why injection molding is capable of...Ch. 19 - Prob. 24QLPCh. 19 - Explain the reasons that some plastic-forming...Ch. 19 - Describe the problems involved in recycling...Ch. 19 - Can thermosetting plastics be used in injection...Ch. 19 - Inspect some plastic containers, such as those...Ch. 19 - An injection-molded nylon gear is found to contain...Ch. 19 - Explain why operations such as blow molding and...Ch. 19 - Prob. 31QLPCh. 19 - Typical production rates are given in Table 19.2....Ch. 19 - What determines the cycle time for (a) injection...Ch. 19 - Does the pull-in defect (sink marks) shown in Fig....Ch. 19 - What determines the intervals at which the...Ch. 19 - Identify processes that would be suitable for...Ch. 19 - Identify processes that are capable of producing...Ch. 19 - Inspect several electrical components, such as...Ch. 19 - Inspect several similar products that are made of...Ch. 19 - What are the advantages of using whiskers a...Ch. 19 - Construct a table that lists the main...Ch. 19 - Estimate the die-clamping force required for...Ch. 19 - A 2-Iitcr plastic beverage bottle is made by blow...Ch. 19 - Consider a Styrofoam drinking cup. Measure the...Ch. 19 - In Fig. 19.2, what flight angle, , should be used...Ch. 19 - Make a survey of a variety of sports equipment,...Ch. 19 - Explain the design considerations involved in...Ch. 19 - Give examples of several parts suitable for insert...Ch. 19 - Give other examples of design modifications in...Ch. 19 - With specific examples, discuss the design issues...Ch. 19 - Die swell in extrusion is radially uniform for...Ch. 19 - Inspect various plastic components in a typical...Ch. 19 - It is well known that plastic forks, spoons, and...Ch. 19 - Prob. 55SDPCh. 19 - Make a survey of the technical literature, and...Ch. 19 - Prob. 57SDPCh. 19 - Prob. 58SDPCh. 19 - Prob. 59SDPCh. 19 - Examine some common and colorful plastic poker...Ch. 19 - Obtain different styles of toothpaste tubes,...Ch. 19 - By incorporating small amounts of blowing agent,...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY