Interpretation:
The normal boiling point of the mercury has to be found.
Concept introduction:
At normal boiling point the liquid phase of any substance is in equilibrium with its gaseous phase. This means, the difference in free energy between the two phases is zero. Using this assumption the normal boiling point of mercury can be found.
The equation given below helps us to calculate the change in free energy in a system.
Entropy is the measure of randomness in the system. Entropy change in a reaction is the difference in entropy of theproducts and reactants.
Where,
Enthalpy is the amount energy absorbed or released in a process.
The enthalpy change in a system
Where,
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
General Chemistry
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY