University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 18, Problem 18.25DQ
The atmosphere of the planet Mars is 95.3% carbon dioxide (CO2) and about 0.03% water vapor. The atmospheric pressure is only about 600 Pa, and the surface temperature varies from −30°C to −100°C. The polar ice caps contain both CO2 ice and water ice. Could there be liquid CO2 on the surface of Mars? Could there be liquid water? Why or why not?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a planet where Solar onstant = 1360 W /m2 and albedo=0.30. If the planet has a water vapor feedback so that the number of layers n is a function of surface temperature nT = (T – 254.5)/100, what is the equilibrium surface temperature?
Atmospheric pressure on Earth at its surface is 101 KPa (101 kilopascals or 101,000 N/m2). Which of these statements is true?
If we pump out the gas in a closed container leaving only 1 billionth of the original gas there will still be more than 1010 (10 billion) atoms per cm3 in the container.
If we pump out the gas in a closed container leaving only 1 billionth of the original gas there will be fewer than 100 atoms per m3 in the container.
When we reduce the pressure in the container while keeping the temperature constant, the number of atoms per m3 must stay constant.
At 1 atmosphere, the number of atoms/m3 in air at room temperature is about 109, one billion atoms.
1. Compute the scale height for the atmosphere of Mars, which has a surface gravity of 3.7 m/?2,effective surface temperature of 218?, and atmospheric constituents in percent volume of 2.7% nitrogen(?2), 0.07% oxygen (?2), 1.6% argon (??), 95.6% carbon dioxide (??2), and 0.03% water vapor (?2?).The molar mass of oxygen (O) 15.999 ??/???? , nitrogen (N) 14.007 ??/???? ,argon (?? ) 39.948 ??/????, hydrogen (?) 1.00795 ??/???? and carbon 12.0107 ??/???�
You can also find t[he entire question in the image below
Chapter 18 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 18.1 - Rank the following ideal gases in order from...Ch. 18.2 - Prob. 18.2TYUCh. 18.3 - Rank the following gases in order from (a) highest...Ch. 18.4 - A cylinder with a fixed volume contains hydrogen...Ch. 18.5 - A quantity of gas containing N molecules has a...Ch. 18.6 - The average atmospheric pressure on Mars is 6.0 ...Ch. 18 - Section 18.1 states that ordinarily, pressure,...Ch. 18 - In the ideal-gas equation, could an equivalent...Ch. 18 - When a car is driven some distance, the air...Ch. 18 - The coolant in an automobile radiator is kept at a...
Ch. 18 - Unwrapped food placed in a freezer experiences...Ch. 18 - A group of students drove from their university...Ch. 18 - The derivation of the ideal-gas equation included...Ch. 18 - A rigid, perfectly insulated container has a...Ch. 18 - (a) Which has more atoms: a kilogram of hydrogen...Ch. 18 - Use the concepts of the kinetic-molecular model to...Ch. 18 - The proportions of various gases in the earths...Ch. 18 - Comment on the following statement: When two gases...Ch. 18 - Prob. 18.13DQCh. 18 - The temperature of an ideal gas is directly...Ch. 18 - If the pressure of an ideal monatomic gas is...Ch. 18 - In deriving the ideal-gas equation from the...Ch. 18 - Imagine a special air filter placed in a window of...Ch. 18 - Prob. 18.18DQCh. 18 - Consider two specimens of ideal gas at the same...Ch. 18 - The temperature of an ideal monatomic gas is...Ch. 18 - Prob. 18.21DQCh. 18 - (a) If you apply the same amount of heat to 1.00...Ch. 18 - Prob. 18.23DQCh. 18 - In a gas that contains N molecules, is it accurate...Ch. 18 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 18 - Prob. 18.26DQCh. 18 - Ice is slippery to walk on, and especially...Ch. 18 - Hydrothermal vents are openings in the ocean floor...Ch. 18 - The dark areas on the moons surface are called...Ch. 18 - In addition to the normal cooking directions...Ch. 18 - A 20.0-L tank contains 4.86 104 kg of helium at...Ch. 18 - Helium gas with a volume of 3.20 L, under a...Ch. 18 - A cylindrical tank has a tight-fitting piston that...Ch. 18 - A 3.00-L lank contains air at 3.00 atm and 20.0C....Ch. 18 - Planetary Atmospheres. (a) Calculate the density...Ch. 18 - You have several identical balloons. You...Ch. 18 - A Jaguar XK8 convertible has an eight-cylinder...Ch. 18 - A welder using a tank of volume 0.0750 m3 fills it...Ch. 18 - A large cylindrical tank contains 0.750 m3 of...Ch. 18 - An empty cylindrical canister 1.50 m long and 90.0...Ch. 18 - The gas inside a balloon will always have a...Ch. 18 - An ideal gas has a density of 1.33 106 g/cm3 at...Ch. 18 - If a certain amount of ideal gas occupies a volume...Ch. 18 - A diver observes a bubble of air rising from the...Ch. 18 - A metal tank with volume 3.10 L will burst if the...Ch. 18 - Three moles of an ideal gas are in a rigid cubical...Ch. 18 - With the assumptions of Example 18.4 (Section...Ch. 18 - With the assumption that the air temperature is a...Ch. 18 - (a) Calculate the mass of nitrogen present in a...Ch. 18 - At an altitude of 11,000 m (a typical cruising...Ch. 18 - Prob. 18.21ECh. 18 - Prob. 18.22ECh. 18 - Modern vacuum pumps make it easy to attain...Ch. 18 - The Lagoon Nebula (Fig. E18.24) is a cloud of...Ch. 18 - In a gas at standard conditions, what is the...Ch. 18 - How Close Together Are Gas Molecules? Consider an...Ch. 18 - (a) What is the total translational kinetic energy...Ch. 18 - A flask contains a mixture of neon (Ne), krypton...Ch. 18 - We have two equal-size boxes, A and B. Each box...Ch. 18 - A container with volume 1.64 L is initially...Ch. 18 - Prob. 18.31ECh. 18 - Martian Climate. The atmosphere of Mars is mostly...Ch. 18 - Prob. 18.33ECh. 18 - Calculate the mean free path of air molecules at...Ch. 18 - At what temperature is the root-mean-square speed...Ch. 18 - Prob. 18.36ECh. 18 - Prob. 18.37ECh. 18 - Perfectly rigid containers each hold n moles of...Ch. 18 - (a) Compute the specific heat at constant volume...Ch. 18 - Prob. 18.40ECh. 18 - Prob. 18.41ECh. 18 - For a gas of nitrogen molecules (N2), what must...Ch. 18 - Prob. 18.43ECh. 18 - Meteorology. The vapor pressure is the pressure of...Ch. 18 - Calculate the volume of 1.00 mol of liquid water...Ch. 18 - A physics lecture room at 1.00 atm and 27.0C has a...Ch. 18 - CP BIO The Effect of Altitude on the Lungs. (a)...Ch. 18 - CP BIO The Bends. If deep-sea divers rise to the...Ch. 18 - CP A hot-air balloon stays aloft because hot air...Ch. 18 - In an evacuated enclosure, a vertical cylindrical...Ch. 18 - A cylinder 1.00 m tall with inside diameter 0.120...Ch. 18 - CP During a test dive in 1939, prior to being...Ch. 18 - Atmosphere or Titan. Titan, the largest satellite...Ch. 18 - Pressure on Venus. At the surface of Venus the...Ch. 18 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 18 - A flask with a volume of 1.50 L, provided with a...Ch. 18 - CP A balloon of volume 750 m3 is to be filled with...Ch. 18 - A vertical cylindrical tank contains 1.80 mol of...Ch. 18 - CP A large tank of water has a hose connected to...Ch. 18 - CP A light, plastic sphere with mass m = 9.00 g...Ch. 18 - Prob. 18.61PCh. 18 - BIO A person at rest inhales 0.50 L of air with...Ch. 18 - You have two identical containers, one containing...Ch. 18 - The size of an oxygen molecule is about 2.0 1010...Ch. 18 - A sealed box contains a monatomic ideal gas. The...Ch. 18 - Helium gas is in a cylinder that has rigid walls....Ch. 18 - You blow up a spherical balloon to a diameter of...Ch. 18 - CP (a) Compute the increase in gravitational...Ch. 18 - Prob. 18.69PCh. 18 - Prob. 18.70PCh. 18 - It is possible to make crystalline solids that are...Ch. 18 - Hydrogen on the Sun. The surface of the sun has a...Ch. 18 - Prob. 18.73PCh. 18 - Planetary Atmospheres. (a) The temperature near...Ch. 18 - Prob. 18.75PCh. 18 - Prob. 18.76PCh. 18 - CALC (a) Explain why in a gas of N molecules, the...Ch. 18 - Prob. 18.78PCh. 18 - CP Oscillations of a Piston. A vertical cylinder...Ch. 18 - Prob. 18.80PCh. 18 - DATA The Dew Point and Clouds. The vapor pressure...Ch. 18 - DATA The statistical quantities average value and...Ch. 18 - CP Dark Nebulae and the Interstellar Medium. The...Ch. 18 - CALC Earths Atmosphere. In t he troposphere, the...Ch. 18 - Prob. 18.85PPCh. 18 - Estimate the ratio of the thermal conductivity of...Ch. 18 - The rate of effusionthat is, leakage of a gas...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
WHAT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of genotype AA...
Campbell Biology in Focus (2nd Edition)
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Near the martian equator, temperatures at the same spot can vary from an average of 135 °C at night to an average of 30 °C during the day. How can you explain such a wide difference in temperature compared to that on Earth?arrow_forward100 Mll, N 8.6.E (a) Calculate the equilibrium temperature of a meteoroid of mass M, density p, and albedo A in the vicinity of the Earth. (b) Evaluate your result for a chondrite with M = 10° g, p = 2.5 g cm-3, and albedo A = 0.05 and for an achondrite with M = 10° g, p = 3 g cm and albedo A = 0.3. -3arrow_forwardHow is the distance from the sun for planets in our solar system related to the mean temperature of each planet? To find out, a scatterplot that relates the natural log of the distance of each planet (including Pluto) from the sun in millions of miles and the natural log of the mean planetary temperature in Kelvin was created. In(Temperature) vs. In(Distance) 6.8 6.6 6.4 6.2 6 5.8 5.6 5.4 5.2 4.8 4.6 4.4 4.2 4 4 6 7 8. In(Distance) Predictor Coef 7.9009 SE Coef P Conatant 0.4381 18.03 0.000 In Distance -0.4536 0.0706 -6.42 0.004 s = 0.3446 R-Sq = 85.5 R-8q (adj) = 83.2% Based on the scatterplot and computer output, a reasonable estimate of mean temperature in Kelvin for Saturn, which is 886.7 million miles away from the sun is: O 4.822 degrees Kelvin because ý = -0.4536(In 886.7) + 7.9009 = 4.822. O 124.2 degrees Kelvin because in y = -0,4536(in 886,7) + 7.9009 =4,822 and e4.822 = 124.2. O 709.0 degrees Kelvin because In y = - 0.4536(log 886.7) + 7.9009 =6.564 and e6.564 = 709.0. O…arrow_forward
- Atmospheric pressure on Earth at its surface is 101 KPa (101 kilopascals or 101,000 N/m2). Which of these statements is true. When we reduce the pressure in the container while keeping the temperature constant, the number of atoms per m3 must stay constant. At 1 atmosphere, the number of atoms/m3 in air at room temperature is about 109, one billion atoms. If we pump out the gas in a closed container leaving only 1 billionth of the original gas there will be fewer than 100 atoms per m3 in the container. If we pump out the gas in a closed container leaving only 1 billionth of the original gas there will still be more than 1010 (10 billion) atoms per cm3 in the container.arrow_forwardSaturn's moon Titan has a mass of 1.3452 x 1023 kg , a diameter of 5,150 km, and an atmosphere made mostly of N2 at a constant temperature of -179 degrees Celsius. Assume that the pressure at the surface is 50% more than on Earth. What is your best estimate of Titan's atmosphere's R constant?arrow_forwardImagine that you have air in a sealed glass container that has a volume of 1 liter. The pressure inside the container is 1013 hPa and the temperature is 20◦C. You now inject cloud droplets into the chamber without letting any air leak out. The droplets have a radius of 10 micrometers, and you inject a concentration of drops that is typical of what you find in a cloud (200 drops per cm3). Will there be a change in the gas pressure? If so, by what amount? Please provide a calculation. What does your answer tell you about the presence of particles in the atmosphere and their potential influence on pressure?arrow_forward
- Ceres is the largest asteriod in the Solar System.But with a mass of q.38 x 102º kg, a radius of 469.73 KM,and a maximum surface temperature of - 38.15°C it doesn't have enough gravity to keep an atmosphere.If the density of Ceres were to remain the same, what would its radius need to be (in kilometers) for itš escape velocity to the rms speed Of Hydrogen gas (H,) ot its maximum svrface temperature?arrow_forwardThe number density of gas atoms at a certain location in the space above our planet is about 0.75 × 10!1 m²³, and the pressure is 2.9 x 10- 10 Pa in this region. What is the temperature in this region, in degrees Celsius? T =arrow_forwardAssume that when in thermal equilibrium (i.e. the temperature is not changing) Mars absorbs all of the heat it receives from the Sun and then re-radiates it as black body radiation from all parts of its spherical surface. Assuming that Mars' temperature is uniform across all of its surface, calculate the temperature on Mars. The Stefan-Boltzmann constant σ=5.7×10−8 W m−2K−4.To answer this question you need to balance the total energy per second being absorbed by Mars with the total energy per second being radiated by Mars. Key: Flux of radiation from the Sun at Mars' orbital radius is 597 W m-2. The luminosity of the Sun Ls = 3.8×1026 W. Mars orbits at a distance of 2.25×1011 m (1.5 AU) from the Sun. Total amount of radiative energy per second is 2.2 x 1016 W.arrow_forward
- 15 The surface temperature on Venus may approach 735 K. What is this temperature in degrees Celsius? type your answer... The temperature on Mercury may drop to -263° F at night. What is this temperature in degrees Celsius? type your answer... Spointe Iarrow_forwardThe heat index (HI) is an estimate of the temperature felt by the human body based on the actual measured air temperature T (in °F) and relative humidity h.. It is given by HI = – 42.379 +2.049015237 + 10.14333127h, – 0.22475541Th, – (6.83783 × 10-3)T² - (5.481717 x 10-2)h,² + (1.22874 × 10-3)T®h, + (8.5282 · 10-4)Th,² - (1.99 x 10-6)T®h,?. a. If the air temperature in your area is 107°F with a relative humidity of 8%, how hot does your body feel? b. If the air temperature and relative humidity is known to be increasing at a rate of 2°F per sec and 1% per sec, resp., how fast is the heat index changing at the moment when the air temperature in your area is 107°F with a relative humidity of 8%?arrow_forwardP1B.7 Calculate the escape velocity (the minimum initial velocity that will take an object to in nity) from the surface of a planet of radius R. What is the value for (i) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, (ii) Mars, R = 3.38 ×106 m, mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules have mean speeds equal to their escape speeds? What proportion of the molecules have enough speed to escape when the temperature is (i) 240 K, (ii) 1500 K? Calculations of this kind are very important in considering the composition of planetary atmospheres.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY