Physical Universe
16th Edition
ISBN: 9780077862619
Author: KRAUSKOPF, Konrad B. (konrad Bates), Beiser, Arthur
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 18, Problem 17MC
If we know both the luminosity and brightness of a star, we can find its
- a. mass
- b. temperature
- c. distance
- d. age
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An eclipsing binary will
a.
be more luminous than a visual binary.
b.
always be a spectroscopic binary.
c.
give off most of its light in the infrared.
d.
show a constant Doppler shift in its spectral lines.
e.
show two stars with variable proper motion.
The period–luminosity relation is useful in determining
a.
the mass of a star for which the distance is known.
b.
the temperature of a star for which we know the luminosity.
c.
the radius of the bulge of our galaxy.
d.
the distance to globular clusters that contain Cepheid variables.
e.
the mass of the Milky Way Galaxy.
The hydrogen lines in spectral type A stars
a.
are most narrow for supergiants.
b.
are most narrow for main-sequence stars.
c.
cannot be used to estimate the luminosity of the star.
d.
are very weak and difficult to see.
e.
are useful in determining the apparent magnitude of the star.
Chapter 18 Solutions
Physical Universe
Ch. 18 - Prob. 1MCCh. 18 - Prob. 2MCCh. 18 - Prob. 3MCCh. 18 - Prob. 4MCCh. 18 - Prob. 5MCCh. 18 - Prob. 6MCCh. 18 - Prob. 7MCCh. 18 - Prob. 8MCCh. 18 - Prob. 9MCCh. 18 - Prob. 10MC
Ch. 18 - Prob. 11MCCh. 18 - Prob. 12MCCh. 18 - Prob. 13MCCh. 18 - Prob. 14MCCh. 18 - Prob. 15MCCh. 18 - Prob. 16MCCh. 18 - If we know both the luminosity and brightness of a...Ch. 18 - Prob. 18MCCh. 18 - Prob. 19MCCh. 18 - Prob. 20MCCh. 18 - Prob. 21MCCh. 18 - Prob. 22MCCh. 18 - Prob. 23MCCh. 18 - Prob. 24MCCh. 18 - Prob. 25MCCh. 18 - Prob. 26MCCh. 18 - Prob. 27MCCh. 18 - Prob. 28MCCh. 18 - Prob. 29MCCh. 18 - Prob. 30MCCh. 18 - Prob. 31MCCh. 18 - Prob. 32MCCh. 18 - Prob. 33MCCh. 18 - Prob. 34MCCh. 18 - Prob. 35MCCh. 18 - Prob. 36MCCh. 18 - Prob. 37MCCh. 18 - Prob. 38MCCh. 18 - Prob. 39MCCh. 18 - Black holes are remnants of a. stars with small...Ch. 18 - Prob. 1ECh. 18 - Prob. 2ECh. 18 - Prob. 3ECh. 18 - Prob. 4ECh. 18 - Prob. 5ECh. 18 - Prob. 6ECh. 18 - Prob. 7ECh. 18 - Prob. 8ECh. 18 - Prob. 9ECh. 18 - Prob. 10ECh. 18 - Prob. 11ECh. 18 - Prob. 12ECh. 18 - Prob. 13ECh. 18 - Prob. 14ECh. 18 - Prob. 15ECh. 18 - Prob. 16ECh. 18 - Prob. 17ECh. 18 - Prob. 18ECh. 18 - Prob. 19ECh. 18 - Prob. 20ECh. 18 - Prob. 21ECh. 18 - Prob. 22ECh. 18 - Prob. 23ECh. 18 - Prob. 24ECh. 18 - Prob. 25ECh. 18 - Prob. 26ECh. 18 - Prob. 27ECh. 18 - Prob. 28ECh. 18 - Prob. 29ECh. 18 - Prob. 30ECh. 18 - Prob. 31ECh. 18 - Prob. 32ECh. 18 - Prob. 33ECh. 18 - Prob. 34ECh. 18 - Prob. 35ECh. 18 - Prob. 36ECh. 18 - Prob. 37ECh. 18 - Prob. 38ECh. 18 - Prob. 39ECh. 18 - Prob. 40ECh. 18 - Prob. 41ECh. 18 - Prob. 42ECh. 18 - Prob. 43ECh. 18 - Prob. 44ECh. 18 - Prob. 45ECh. 18 - Prob. 46ECh. 18 - Prob. 47ECh. 18 - Prob. 48ECh. 18 - Prob. 49ECh. 18 - Prob. 50ECh. 18 - Prob. 51ECh. 18 - Prob. 52ECh. 18 - Prob. 53ECh. 18 - Prob. 54ECh. 18 - Prob. 55ECh. 18 - How large are black holes? Can any star evolve...Ch. 18 - Prob. 57ECh. 18 - Prob. 58E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Distances to the nearest stars (up to 500 by away) can be measured by a technique called parallax, as shown in Figure 34.26. What are the angles 1 and 2 relative to the plane of the Earth’s orbit for a star 4.0 by directly above the Sun?arrow_forwardYou have enough information from this chapter to estimate the distance to Alpha Centauri, the second nearest star, which has an apparent magnitude of 0. Since it is a G2 star, like the Sun, assume it has the same luminosity as the Sun and the difference in magnitudes is a result only of the difference in distance. Estimate how far away Alpha Centauri is. Describe the necessary steps in words and then do the calculation. (As we will learn in the Celestial Distances chapter, this method-namely, assuming that stars with identical spectral types emit the same amount of energy-is actually used to estimate distances to stars.) If you assume the distance to the Sun is in AU, your answer will come out in AU.arrow_forwardA star with a radius twice that of the Sun and a surface temperature twice that of the Sun, will have a luminosity times as great as the Sun's luminosity. A. 4 B. 9 O C. 16 D. 64 O E. 144arrow_forward
- The gas and dust cocoon surrounding young stars a. is blown away when the young stellar surface heats up and becomes more luminous. b. remains surrounding the young star throughout its adult life. c. eventually collapses onto the star, increasing its mass and luminosity. d. evaporates gradually over the lifetime of the star. e. expands as the star’s luminosity increases eventually reaching a distance far enough that it condenses to form comets.arrow_forwardAbsolute visual magnitude is a. the apparent magnitude of a star observed from Earth. b. the luminosity of a star observed from a distance of 1,000 pc. c. the apparent magnitude of a star observed from a distance of 10 pc. d. the luminosity of a star observed from Earth. e. c and d.arrow_forward4. Suppose we observe a binary star system in which one star is much more massive than the other and both are on the main sequence. We measure that the smaller star orbits the larger at a distance of 10¹3 m with a speed of 10 m/s. a. What is the mass of the larger star? b. Which star has a higher luminosity? c. Which has a larger radius? d. Which is hotter?arrow_forward
- Which of the following statements about novae is not true? A. A nova involves fusion taking place on the surface of a white dwarf. B. A star system that undergoes a nova may have another nova sometime in the future. C. Our Sun will probably undergo at least one nova when it becomes a white dwarf about 5 billion years from now. D. When a star system undergoes a nova, it brightens considerably, but not as much as a star system undergoing a supernova. Is the answer C? Since the sun has no companion star, it cannot gain accreted matter to initiate a nova and so it would not undergo a nova, it would just undergo a type I supernova? Thanks!arrow_forwardWhich of the following is wrong? A. Tidal effects in a binary star system become more important when one or both stars become giant stars. B. There is no fusion occurring in the core of a low-mass red giant star. C. Gold (the element) is produced during the supernova explosions of high-mass stars. D. Suppose the star Betelgeuse were to become a supernova tomorrow, we'd see by naked eyes a cloud of gas expanding away from the position where Betelgeuse used to be. Over a period of a few weeks, this cloud would fill a large part of our sky.arrow_forwardThe total mass of a binary system can be calculated from a. the ratio of the angular separation from the center of mass of each of the stars. b. the distance to the binary and its radial velocity. c. the semi major axis and period of the orbit. d. the radial velocities of the two stars. e. the time required for the small star to eclipse the larger star.arrow_forward
- In order to form a black hole, a star must be about how much more massive than our Sun? a. Fifty times as massive b. Ten times as massive c. Twice as massive d. Twenty times as massive e. It actually must be less massive than our Sunarrow_forwardThe type of star that does not currently exist because our universe is not old enough is a a. red dwarf. b. white dwarf. c. brown dwarf. d. black dwarf.arrow_forwardWhich of the following stars are bright and very cool. A. White dwarfs B. Our sun C. Giantsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY