Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.5, Problem 102P
The 25-lb slender rod has a length of 6 ft. Using a collar of negligible mass, its end A is confined to move along the smooth circular bar of radius
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.
The 25-lb slender rod has a length of 6 ft . Using a collar of negligible mass, its end A is confined to move along the smooth circular bar of radius 32? ft . End B rests on the floor, for which the coefficient of kinetic friction is ?B = 0.52. The bar is released from rest when theta is 30 degrees. Find the angular acceleration of the rod
(Please type answer no write by hend))
NOTE: the friction component is .48
Review
The 25-lb slender rod has a length of 6 ft Using a collar
of nogligible mass, its end A is confined to move along
the smooth circular bar of radius 3/2 ft End B rests on
the floor, for which the coetficient of kinetic friction is
HH =0.48 The bar is released from rest when @- 30
(Figure 1)
Part A
Determine the angular acceleration of the bar at this instant, measured dockwine
Express your answer using three significant figures. Enter positive value if the angular
acceleration is clockwise and negative value if the angular acceleration is counterciockwise.
Figure
1 of 1>
Vo AEO t vec
a= 3.8
rad/s
Submit
Previous Answrs Request Answer
X Incorrect; Try Again: 2 attempts remaining
32 ft
Provide Feedbeck
Next
Chapter 17 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 17.1 - Determine the moment of inertia Iy for the slender...Ch. 17.1 - The solid cylinder has an outer radius R1 height...Ch. 17.1 - Determine the moment of inertia of the thin ring...Ch. 17.1 - The paraboloid is formed by revolving the shaded...Ch. 17.1 - Determine the radius of gyration kr of the body....Ch. 17.1 - The sphere is formed by revolving the shaded area...Ch. 17.1 - The frustum is formed by rotating the shaded area...Ch. 17.1 - Prob. 8PCh. 17.1 - Prob. 9PCh. 17.1 - The pendulum consists of a 4-kg circular plate and...
Ch. 17.1 - The assembly is made of the slender rods that have...Ch. 17.1 - Prob. 12PCh. 17.1 - The wheel consists of a thin ring having a mass of...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - Determine the moment of inertia about an axis...Ch. 17.1 - Prob. 16PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - Prob. 18PCh. 17.1 - Prob. 19PCh. 17.1 - Determine the moment of inertia of the wheel about...Ch. 17.1 - The pendulum consists of the 3-kg slender rod and...Ch. 17.1 - Prob. 22PCh. 17.1 - Determine the moment of inertia of the overhung...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Prob. 2PPCh. 17.3 - Prob. 1FPCh. 17.3 - Prob. 2FPCh. 17.3 - Prob. 3FPCh. 17.3 - Prob. 4FPCh. 17.3 - At the instant shown both rods of negligible mass...Ch. 17.3 - Prob. 6FPCh. 17.3 - The door has a weight of 200 lb and a center of...Ch. 17.3 - The door has a weight or 200 lb and a center of...Ch. 17.3 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17.3 - The sports car has a weight of 4500 lb and center...Ch. 17.3 - The assembly has a mass of 8 Mg and is hoisted...Ch. 17.3 - The assembly has a mass of 4 Mg and is hoisted...Ch. 17.3 - The uniform girder AB has a mass of 8 Mg....Ch. 17.3 - A car having a weight of 4000 lb begins to skid...Ch. 17.3 - A force of P = 300 N is applied to the 60-kg cart....Ch. 17.3 - Determine the largest force P that can be applied...Ch. 17.3 - The trailer with its load has a mass of 150-kg and...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The bar has a weight per length w and is supported...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The uniform crate has a mass of 50 kg and rests on...Ch. 17.3 - Determine the acceleration of the 150-lb cabinet...Ch. 17.3 - Prob. 44PCh. 17.3 - Prob. 45PCh. 17.3 - Prob. 46PCh. 17.3 - Prob. 47PCh. 17.3 - The snowmobile has a weight of 250 lb, centered at...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - Prob. 50PCh. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - Prob. 53PCh. 17.3 - Prob. 54PCh. 17.3 - Prob. 55PCh. 17.3 - Prob. 56PCh. 17.4 - The 100-kg wheel has a radius of gyration about...Ch. 17.4 - Prob. 8FPCh. 17.4 - Prob. 9FPCh. 17.4 - Prob. 10FPCh. 17.4 - Prob. 11FPCh. 17.4 - Prob. 12FPCh. 17.4 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17.4 - The uniform 24-kg plate is released from rest at...Ch. 17.4 - The uniform slender rod has a mass m. If it is...Ch. 17.4 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17.4 - If a horizontal force of P = 100 N is applied to...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - A cord is wrapped around the outer surface of the...Ch. 17.4 - Disk A has a weight of 5 lb and disk B has a...Ch. 17.4 - Prob. 66PCh. 17.4 - If the cord at B suddenly fails, determine the...Ch. 17.4 - Prob. 68PCh. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The reel of cable has a mass of 400 kg and a...Ch. 17.4 - Prob. 72PCh. 17.4 - Cable is unwound from a spool supported on small...Ch. 17.4 - The 5-kg cylinder is initially at rest when it is...Ch. 17.4 - Prob. 75PCh. 17.4 - Prob. 76PCh. 17.4 - Disk D turns with a constant clockwise angular...Ch. 17.4 - Prob. 78PCh. 17.4 - Prob. 79PCh. 17.4 - Prob. 80PCh. 17.4 - Prob. 81PCh. 17.4 - Prob. 82PCh. 17.4 - Prob. 83PCh. 17.4 - Prob. 84PCh. 17.4 - Prob. 85PCh. 17.4 - Prob. 86PCh. 17.4 - Prob. 87PCh. 17.4 - The 100-kg pendulum has a center of mass at G and...Ch. 17.5 - The Catherine wheel is a firework that consists of...Ch. 17.5 - The uniform 60-kg slender bar is initially at rest...Ch. 17.5 - Prob. 14FPCh. 17.5 - Prob. 15FPCh. 17.5 - The 20- kg sphere rolls down the inclined plane...Ch. 17.5 - The 200-kg spool has a radius of gyration about...Ch. 17.5 - The 12-kg slender rod is pinned to a small roller...Ch. 17.5 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17.5 - The 20-kg punching bag has a radius of gyration...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - The 12-kg uniform bar is supported by a roller at...Ch. 17.5 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17.5 - If the coefficient of static friction at C is s =...Ch. 17.5 - The 25-lb slender rod has a length of 6 ft. Using...Ch. 17.5 - The 15-lb circular plate is suspended from a pin...Ch. 17.5 - If P = 30 lb, determine the angular acceleration...Ch. 17.5 - If the coefficient of static friction between the...Ch. 17.5 - The uniform bar of mass m and length L is balanced...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - The semicircular disk having a mass of 10 leg is...Ch. 17.5 - The 500-kg concrete culvert has a mean radius of...Ch. 17.5 - The 15-lb disk rests on the 5-lb plate. A cord is...Ch. 17.5 - The semicircular disk having a mass of 10 kg is...Ch. 17.5 - The circular concrete culvert rols with an angular...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - A cord is wrapped around each of the two 10-kg...Ch. 17.5 - The disk of mass m and radius r rolls without...Ch. 17.5 - The uniform beam has a weight W. If it is...Ch. 17.5 - The 500-lb beam is supported at A and B when it is...Ch. 17.5 - The solid ball of radius rand mass m rolls without...Ch. 17.5 - By pressing down with the finger at B, a thin ring...Ch. 17.5 - Prob. 1RPCh. 17.5 - Prob. 2RPCh. 17.5 - Prob. 3RPCh. 17.5 - Prob. 4RPCh. 17.5 - Prob. 5RPCh. 17.5 - Prob. 6RPCh. 17.5 - Prob. 7RPCh. 17.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 29-kg spool of outer radius ro=530 mm has a centroidal radius of gyration k=355 mm and a central shaft of radius ri=215 mm. The spool is at rest on the incline when a tension T=204 N is applied to the end of a cable which is wrapped securely around the central shaft as shown. Determine the acceleration aaa of the spool center GGG and the friction force F acting at the interface of the spool and incline. The friction coefficients there are μs=0.28 and μk=0.17. The tension T is applied parallel to the incline and the angle θ=16. The acceleration aaa and the force F are both positive if up the incline, negative if down. a is not 2.112 or -2.112arrow_forwardThe 35-kg roll of paper rests along the wall where the coefficient of kinetic friction is μ = 0.2. A vertical force of P = 40 N is applied to the paper. Neglect the mass of the unraveled paper and take the radius of gyration of the spool about the axle O to be ko = 70 mm. (Figure 1) Figure o 120 mm P= 40 N Part A Determine the magnitude of the angular velocity of the roll when t = 8 s starting from rest. Express your answer using three significant figures. ——| ΑΣΦ | | vec 6 ? rad/s Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining Provide Feedbackarrow_forwardThe 10-kg wheel is rolling under the constant moment of M = 97 N-m. The wheel has radius r= 0.59 m, has mass center at point G, and the radius of gyration is kg = 0.27 m. The coefficients of friction between the wheel and the ground is ls = 0.25 and Hk = 0.14. If the wheel rolls while slipping, determine the magnitude of the linear acceleration of point G (in m/s2). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. M Garrow_forward
- The 29-kg spool of outer radius ro=530 mm has a centroidal radius of gyration k=355 mm and a central shaft of radius ri=215 mm. The spool is at rest on the incline when a tension T=204 N is applied to the end of a cable which is wrapped securely around the central shaft as shown. Determine the acceleration aaa of the spool center GGG and the friction force FFF acting at the interface of the spool and incline. The friction coefficients there are μs=0.28 and μk=0.17. The tension T is applied parallel to the incline and the angle θ=16. The acceleration aaa and the force F are both positive if up the incline, negative if down.arrow_forwardThe 10 kg wheel has a radius of gyration about its center O of ko = 300 mm. When the wheel is subjected to the couple moment, it slips as it rolls. Determine the angular acceleration of the wheel and the acceleration of the wheel's center O. The coefficient of kinetic friction between the wheel and the plane is = 0.2. (Figure 1) Figure M 100 N m < 1 of 1 0.4 m Part A Determine the angular acceleration of the wheel. Express your answer to three significant figures and include the appropriate units. α = Submit ■ Part B ao = μÅ X Incorrect; Try Again Value Submit Previous Answers Request Answer Determine the acceleration of the wheel's center O. Express your answer to three significant figures and include the appropriate units. μA Units Value X Incorrect; Try Again Units ? Previous Answers Request Answer ? Units input for part Barrow_forwardThe 24-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r= 0.4 m. When the wheel is subjected to the couple moment M = 90 N•m, it slips as it rolls. Determine the linear acceleration of the wheel's center O (in m/s?). The coefficient of kinetic friction between the wheel and the plane is Uk = 0.45. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. Marrow_forward
- The 10-lb disk P (?o = 0) was placed in contact with the wall at C and with disk Q weighing 8-lb. Disk Q maintains an angular acceleration equal to 2 rad/s2,CCW and has a couple moment of M= 31 lb-ft, CCW. If the coefficient of kinetic friction at contact surfaces is 0.25, determine the initial angular acceleration of disk P. Also, determine the reactions at points A and B. reminder: Neglect the weight of rod AB CCW- COUNTERCLOCKWISE SHOW FULL SOLUTION!!!!arrow_forwardThe uniform 99-lb log is supported by the two cables and used as a battering ram. If the log is released from rest in the position shown, calculate the initial tension induced in each cable immediately after release and the corresponding angular acceleration a of the cables. Assume a = 3.9 ft, b = 2.9 ft, c = 1.3 ft, e = 61°. a a C Answers: TA = i 21.6 Ib TB = i 64.9 Ib a = 4.00 rad/sec?arrow_forwardThe 16-kg wheel has a radius of gyration about its center O of ko = 220 mm, and radius r = 0.4 m. When the wheel is subjected to the couple moment M = 98 N•m, it slips as it rolls. Determine the angular acceleration of the wheel (in rad/s²). The coefficient of kinetic friction between the wheel and the plane is μ = 0.27. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answer 1arrow_forward
- The 136-kg spool has a radius of gyration about its mass center of kg = 300 mm. If the couple moment is applied to the spool and the coefficient of kinetic friction between the spool and the ground is u: = 0.2, determine the angular acceleration of the spool, the acceleration of G and the tension in the cable. (Figure 1) Part B Determine the acceleration of G. Express your answer to three significant figures and include the appropriate units. HA ac = Value Units Submit Request Answer Part C Figure Determine the tension in the cable. Express your answer to three significant figures and include the appropriate units. 0.4 m В HA 0.6 m T = Value Units M = 450 N-m Submit Request Answerarrow_forward8. The 20 kg uniform disk of radius r= 0.4 m is at rest on the incline (0 = 20°) when a constant force T= 200 N is applied as shown pulling the cord that is securely wrapped around the rim of the disk. If the coefficients of friction on the incline are u, = 0.3 and u, = 0.2, determine the friction force between the disk and the incline, the angular acceleration of the disk, and the acceleration at the mass center G. F (magnitude and direction) - T a (magnitude and direction) =. ac (magnitude and direction) = Garrow_forwardThe 29-kg wheel is rolling under the constant moment of M = 85 N·m. The wheel has radius r = 0.57 m, has mass center at point G, and the radius of gyration is kg = 0.25 m. The coefficients of friction between the wheel and the ground is g = 0.37 and μk = 0.16. If the wheel rolls while slipping, determine the magnitude of the linear acceleration of point G (in m/s²). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M Your Answer: Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical Design (Machine Design) Clutches, Brakes and Flywheels Intro (S20 ME470 Class 15); Author: Professor Ted Diehl;https://www.youtube.com/watch?v=eMvbePrsT34;License: Standard Youtube License