Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 6FP
To determine
The force developed in link
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. The uniform slender rod has a mass m= 20 kg and length L = 0.5 m. As the frame accelerates forward the rod
is held in the position shown at a steady angle 0 = tan (3/4) by the stop at A. Determine the magnitude of the reaction force
at stop A if the acceleration is a = 6 m/s.
A =
a
L.
A
At the instant shown, link CD rotates with an angular velocity of W = 9.0 rad/s. If it is
subjected to a couple moment M= 320 N-m, determine the magnitude of the
vertical reaction force developed on pin D. The block has a mass of 50 kg and center
of mass at G. Neglect the mass of links AB and CD. (Hint, since the mass of link AB
or CD is negligible, the external force or moment acting on it sums up to 0.) Please
pay attention: the numbers may change since they are randomized. Your answer
must include 1 place after the decimal point, and proper unit. Take g = 9.81 m/s².
0.1 m
0.6 m
В
А
0.4 m'
G
0.4 m
D
C
M
Your Answer:
Answer
units
At the instant shown, link CD rotates with an angular velocity of @, = 8
rad/s. If link CD is subjected to a couple moment of M= 650 lb- ft, determine the
force developed in link AB and the angular acceleration of the links at this instant.
Neglect the weight of the links and the platform. The crate weighs 100 lb and is
fully secured on the platform.
1 ft
4 ft
@CD = 8 rad/s
M = 650 lb-ft
- 3 ft
Chapter 17 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 17.1 - Determine the moment of inertia Iy for the slender...Ch. 17.1 - The solid cylinder has an outer radius R1 height...Ch. 17.1 - Determine the moment of inertia of the thin ring...Ch. 17.1 - The paraboloid is formed by revolving the shaded...Ch. 17.1 - Determine the radius of gyration kr of the body....Ch. 17.1 - The sphere is formed by revolving the shaded area...Ch. 17.1 - The frustum is formed by rotating the shaded area...Ch. 17.1 - Prob. 8PCh. 17.1 - Prob. 9PCh. 17.1 - The pendulum consists of a 4-kg circular plate and...
Ch. 17.1 - The assembly is made of the slender rods that have...Ch. 17.1 - Prob. 12PCh. 17.1 - The wheel consists of a thin ring having a mass of...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - Determine the moment of inertia about an axis...Ch. 17.1 - Prob. 16PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - Prob. 18PCh. 17.1 - Prob. 19PCh. 17.1 - Determine the moment of inertia of the wheel about...Ch. 17.1 - The pendulum consists of the 3-kg slender rod and...Ch. 17.1 - Prob. 22PCh. 17.1 - Determine the moment of inertia of the overhung...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Prob. 2PPCh. 17.3 - Prob. 1FPCh. 17.3 - Prob. 2FPCh. 17.3 - Prob. 3FPCh. 17.3 - Prob. 4FPCh. 17.3 - At the instant shown both rods of negligible mass...Ch. 17.3 - Prob. 6FPCh. 17.3 - The door has a weight of 200 lb and a center of...Ch. 17.3 - The door has a weight or 200 lb and a center of...Ch. 17.3 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17.3 - The sports car has a weight of 4500 lb and center...Ch. 17.3 - The assembly has a mass of 8 Mg and is hoisted...Ch. 17.3 - The assembly has a mass of 4 Mg and is hoisted...Ch. 17.3 - The uniform girder AB has a mass of 8 Mg....Ch. 17.3 - A car having a weight of 4000 lb begins to skid...Ch. 17.3 - A force of P = 300 N is applied to the 60-kg cart....Ch. 17.3 - Determine the largest force P that can be applied...Ch. 17.3 - The trailer with its load has a mass of 150-kg and...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The bar has a weight per length w and is supported...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The uniform crate has a mass of 50 kg and rests on...Ch. 17.3 - Determine the acceleration of the 150-lb cabinet...Ch. 17.3 - Prob. 44PCh. 17.3 - Prob. 45PCh. 17.3 - Prob. 46PCh. 17.3 - Prob. 47PCh. 17.3 - The snowmobile has a weight of 250 lb, centered at...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - Prob. 50PCh. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - Prob. 53PCh. 17.3 - Prob. 54PCh. 17.3 - Prob. 55PCh. 17.3 - Prob. 56PCh. 17.4 - The 100-kg wheel has a radius of gyration about...Ch. 17.4 - Prob. 8FPCh. 17.4 - Prob. 9FPCh. 17.4 - Prob. 10FPCh. 17.4 - Prob. 11FPCh. 17.4 - Prob. 12FPCh. 17.4 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17.4 - The uniform 24-kg plate is released from rest at...Ch. 17.4 - The uniform slender rod has a mass m. If it is...Ch. 17.4 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17.4 - If a horizontal force of P = 100 N is applied to...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - A cord is wrapped around the outer surface of the...Ch. 17.4 - Disk A has a weight of 5 lb and disk B has a...Ch. 17.4 - Prob. 66PCh. 17.4 - If the cord at B suddenly fails, determine the...Ch. 17.4 - Prob. 68PCh. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The reel of cable has a mass of 400 kg and a...Ch. 17.4 - Prob. 72PCh. 17.4 - Cable is unwound from a spool supported on small...Ch. 17.4 - The 5-kg cylinder is initially at rest when it is...Ch. 17.4 - Prob. 75PCh. 17.4 - Prob. 76PCh. 17.4 - Disk D turns with a constant clockwise angular...Ch. 17.4 - Prob. 78PCh. 17.4 - Prob. 79PCh. 17.4 - Prob. 80PCh. 17.4 - Prob. 81PCh. 17.4 - Prob. 82PCh. 17.4 - Prob. 83PCh. 17.4 - Prob. 84PCh. 17.4 - Prob. 85PCh. 17.4 - Prob. 86PCh. 17.4 - Prob. 87PCh. 17.4 - The 100-kg pendulum has a center of mass at G and...Ch. 17.5 - The Catherine wheel is a firework that consists of...Ch. 17.5 - The uniform 60-kg slender bar is initially at rest...Ch. 17.5 - Prob. 14FPCh. 17.5 - Prob. 15FPCh. 17.5 - The 20- kg sphere rolls down the inclined plane...Ch. 17.5 - The 200-kg spool has a radius of gyration about...Ch. 17.5 - The 12-kg slender rod is pinned to a small roller...Ch. 17.5 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17.5 - The 20-kg punching bag has a radius of gyration...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - The 12-kg uniform bar is supported by a roller at...Ch. 17.5 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17.5 - If the coefficient of static friction at C is s =...Ch. 17.5 - The 25-lb slender rod has a length of 6 ft. Using...Ch. 17.5 - The 15-lb circular plate is suspended from a pin...Ch. 17.5 - If P = 30 lb, determine the angular acceleration...Ch. 17.5 - If the coefficient of static friction between the...Ch. 17.5 - The uniform bar of mass m and length L is balanced...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - The semicircular disk having a mass of 10 leg is...Ch. 17.5 - The 500-kg concrete culvert has a mean radius of...Ch. 17.5 - The 15-lb disk rests on the 5-lb plate. A cord is...Ch. 17.5 - The semicircular disk having a mass of 10 kg is...Ch. 17.5 - The circular concrete culvert rols with an angular...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - A cord is wrapped around each of the two 10-kg...Ch. 17.5 - The disk of mass m and radius r rolls without...Ch. 17.5 - The uniform beam has a weight W. If it is...Ch. 17.5 - The 500-lb beam is supported at A and B when it is...Ch. 17.5 - The solid ball of radius rand mass m rolls without...Ch. 17.5 - By pressing down with the finger at B, a thin ring...Ch. 17.5 - Prob. 1RPCh. 17.5 - Prob. 2RPCh. 17.5 - Prob. 3RPCh. 17.5 - Prob. 4RPCh. 17.5 - Prob. 5RPCh. 17.5 - Prob. 6RPCh. 17.5 - Prob. 7RPCh. 17.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The small end rollers of the 8-lb uniform slender bar (length = 4 ft) are constrained to move in the slots, which lie in the verticalplane. At the instant when θ = 30°, the velocity of roller A is 14 ft/s down the vertical slot. Determine the angular acceleration of the bar, the acceleration of mass center G, and the reactions of points A and B, under the action of the 6-lb force P. Neglect the friction and the mass of the small rollers.arrow_forwardAt the instant shown, link CD rotates with an angular velocity of W = 9.5 rad/s. If it is subjected to a couple moment M = 560 N·m, determine the magnitude of the vertical reaction force developed on pin D. The block has a mass of 50 kg and center of mass at G. Neglect the mass of links AB and CD. (Hint, since the mass of link AB or CD is negligible, the external force or moment acting on it sums up to 0.) Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point, and proper unit. Take g = 9.81 m/s². 0.1 m 0.6 m 0.4 m 0.4 m G Your Answer: Answer B D O W units A Marrow_forwardThe vertical bar AB has a mass of 150 kg with center of mass G midway between the ends. The bar is elevated from rest at θ = 0 by means of the parallel links of negligible mass, with a constant couple M = 5 kN∙m applied to the lower link at C. Determine the angular acceleration α of the links as a function of θ and find the force B in the link DB at the instant when θ = 30°.arrow_forward
- A homogeneous 150-kg vertical bar AB is raised from rest at θ = 0° by means of the parallel swinging bars of negligible weight, with a constant moment M = 5 kN-m applied to the lower link at C. Determine the angular velocity and the angular acceleration of the links and the forces at A and B at the instantθ = X°. Take the angle θ = 37°.arrow_forwardThe flat circular disk rotates about a vertical axis through O with a slowly increasing angular velocity w. Prior to rotation, each of the 0.52-kg sliding blocks has the position x = 28 mm with no force in its attached spring. Each spring has a stiffness of 430 N/m. Determine the value of x for each spring for a steady speed of 279 rev/min. Also calculate the normal force N exerted by the side of the slot on the block. The force N is positive if it pushes from the side labeled A. Neglect any friction between the blocks and the slots, and neglect the mass of the springs. (Hint: Sum forces along and normal to the slot.) Answers: X = wwwwwwww N = i i -74-74- mm mm mm Narrow_forwardA uniform plate has a weight of 50 lb. Link AB is subjected to a couple moment of M = 10 lb # ft and has a clockwise angular velocity of 2 rad>s at the instant u = 30°. Determine the force developed in link CD and the tangential component of the acceleration of the plate’s mass center at this instant. Neglect the mass of links AB and CD. PLEASE EXPLAIN THE N-T COORDINATE SYSTEM (HOW DO YOU KNOW WHICH WAY IS THE N-DIRECTION AND T-DIRECTION)arrow_forward
- A constant couple moment M is acted on the drum O to pull the spool C up the incline. Both drum O and spool C can be treated as uniform disk. If spool C is rolling without slipping, determine the angular acceleration of the drum and the cord force. R R (0 Marrow_forwardPravinbhaiarrow_forward2. Consider the 5-1lb bar with length of 2½ feet and width of 2 inches. Small frictionless bearings are mounted to the ends, constraining the motion of the bar to the horizontal x and y slots. The bar starts at rest at positioned at 0= 45°. If an angular acceleration of 3 rad/s² is desired, what moment M must be applied to the bar? What are the reaction forces at A and B at that instant? Additional question: Does the width of the bar matter, or is it appropriate to consider the bar as a slender rod? Consider errors of less than 2% negligible.arrow_forward
- A force of P = 340 N is applied to the 70-kg cart. The mass center of the cart is at G Determine the reaction at both the wheels at A. Determine the reaction at both the wheels at B. What is the acceleration of the cart?arrow_forwardAt the instant shown, link CD rotates with an angular velocity of W = 8.5 rad/s. If it is subjected to a couple moment M = 340 N·m, determine the magnitude of reaction force developed in link AB. The block has a mass of 50 kg and center of mass at G. Neglect the mass of links AB and CD. (Hint, since the mass of link AB or CD is negligible, the external force or moment acting on it sums up to 0.) Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point, and proper unit. Take g = 9.81 m/s². 0.1 m 0.4 m 0.4 m G Your Answer: Answer B 0.6 m units A Marrow_forwardAt the instant shown both rods of negligible mass swing with a counterclockwise angular velocity of w = while the 50-kg bar is subjected to the 100-N horizontal force. Determine the tension developed in the rods and the angular acceleration of the rods at this instant. 5 rad/s,arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY