Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.4, Problem 75P
To determine
The horizontal and vertical components of reaction which the pin at A and the time required for the motion to stop.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 10-kg wheel is rolling under the constant moment of M = 97 N-m. The wheel has radius r= 0.59 m, has mass center at point G, and
the radius of gyration is kg = 0.27 m. The coefficients of friction between the wheel and the ground is ls = 0.25 and Hk = 0.14. If the
wheel rolls while slipping, determine the magnitude of the linear acceleration of point G (in m/s2). Please pay attention: the numbers
may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?.
M
G
The 29-kg wheel is rolling under the constant moment of M = 85 N·m. The wheel has
radius r = 0.57 m, has mass center at point G, and the radius of gyration is kg = 0.25
m. The coefficients of friction between the wheel and the ground is g = 0.37 and
μk = 0.16. If the wheel rolls while slipping, determine the magnitude of the linear
acceleration of point G (in m/s²). Please pay attention: the numbers may change
since they are randomized. Your answer must include 2 places after the decimal
point. Take g = 9.81 m/s².
M
Your Answer:
Answer
The 30-kg wheel is rolling under the constant moment of M = 84 N.m. The wheel has
radius r = 0.48 m, has mass center at point G, and the radius of gyration is kg = 0.24
m. The coefficients of friction between the wheel and the ground is μ = 0.39 and
k=0.10. If the wheel rolls without slipping, determine the angular acceleration of
the wheel (in rad/s²). Please pay attention: the numbers may change since they are
randomized. Your answer must include 2 places after the decimal point. Take g = 9.81
m/s².
M
Your Answer:
Answer
G
1
Chapter 17 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 17.1 - Determine the moment of inertia Iy for the slender...Ch. 17.1 - The solid cylinder has an outer radius R1 height...Ch. 17.1 - Determine the moment of inertia of the thin ring...Ch. 17.1 - The paraboloid is formed by revolving the shaded...Ch. 17.1 - Determine the radius of gyration kr of the body....Ch. 17.1 - The sphere is formed by revolving the shaded area...Ch. 17.1 - The frustum is formed by rotating the shaded area...Ch. 17.1 - Prob. 8PCh. 17.1 - Prob. 9PCh. 17.1 - The pendulum consists of a 4-kg circular plate and...
Ch. 17.1 - The assembly is made of the slender rods that have...Ch. 17.1 - Prob. 12PCh. 17.1 - The wheel consists of a thin ring having a mass of...Ch. 17.1 - If the large ring, small ring and each of the...Ch. 17.1 - Determine the moment of inertia about an axis...Ch. 17.1 - Prob. 16PCh. 17.1 - Determine the location y of the center of mass G...Ch. 17.1 - Prob. 18PCh. 17.1 - Prob. 19PCh. 17.1 - Determine the moment of inertia of the wheel about...Ch. 17.1 - The pendulum consists of the 3-kg slender rod and...Ch. 17.1 - Prob. 22PCh. 17.1 - Determine the moment of inertia of the overhung...Ch. 17.3 - Draw the free-body and kinetic diagrams of the...Ch. 17.3 - Prob. 2PPCh. 17.3 - Prob. 1FPCh. 17.3 - Prob. 2FPCh. 17.3 - Prob. 3FPCh. 17.3 - Prob. 4FPCh. 17.3 - At the instant shown both rods of negligible mass...Ch. 17.3 - Prob. 6FPCh. 17.3 - The door has a weight of 200 lb and a center of...Ch. 17.3 - The door has a weight or 200 lb and a center of...Ch. 17.3 - The jet aircraft has a total mass of 22 Mg and a...Ch. 17.3 - The sports car has a weight of 4500 lb and center...Ch. 17.3 - The assembly has a mass of 8 Mg and is hoisted...Ch. 17.3 - The assembly has a mass of 4 Mg and is hoisted...Ch. 17.3 - The uniform girder AB has a mass of 8 Mg....Ch. 17.3 - A car having a weight of 4000 lb begins to skid...Ch. 17.3 - A force of P = 300 N is applied to the 60-kg cart....Ch. 17.3 - Determine the largest force P that can be applied...Ch. 17.3 - The trailer with its load has a mass of 150-kg and...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The desk has a weight of 75 lb and a center of...Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The 150-kg uniform crate rests on the 10-kg cart....Ch. 17.3 - The bar has a weight per length w and is supported...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The smooth 180-lb pipe has a length of 20 ft and a...Ch. 17.3 - The uniform crate has a mass of 50 kg and rests on...Ch. 17.3 - Determine the acceleration of the 150-lb cabinet...Ch. 17.3 - Prob. 44PCh. 17.3 - Prob. 45PCh. 17.3 - Prob. 46PCh. 17.3 - Prob. 47PCh. 17.3 - The snowmobile has a weight of 250 lb, centered at...Ch. 17.3 - If the carts mass is 30 kg and it is subjected to...Ch. 17.3 - Prob. 50PCh. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - The pipe has a mass of 800 kg and is being towed...Ch. 17.3 - Prob. 53PCh. 17.3 - Prob. 54PCh. 17.3 - Prob. 55PCh. 17.3 - Prob. 56PCh. 17.4 - The 100-kg wheel has a radius of gyration about...Ch. 17.4 - Prob. 8FPCh. 17.4 - Prob. 9FPCh. 17.4 - Prob. 10FPCh. 17.4 - Prob. 11FPCh. 17.4 - Prob. 12FPCh. 17.4 - The 10-kg wheel has a radius of gyration kA = 200...Ch. 17.4 - The uniform 24-kg plate is released from rest at...Ch. 17.4 - The uniform slender rod has a mass m. If it is...Ch. 17.4 - The tent rod has a mass of 2 kg/m. If it is...Ch. 17.4 - If a horizontal force of P = 100 N is applied to...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - The 10-lb bar is pinned at its center O and...Ch. 17.4 - A cord is wrapped around the outer surface of the...Ch. 17.4 - Disk A has a weight of 5 lb and disk B has a...Ch. 17.4 - Prob. 66PCh. 17.4 - If the cord at B suddenly fails, determine the...Ch. 17.4 - Prob. 68PCh. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The 20-kg roll of paper has a radius of gyration...Ch. 17.4 - The reel of cable has a mass of 400 kg and a...Ch. 17.4 - Prob. 72PCh. 17.4 - Cable is unwound from a spool supported on small...Ch. 17.4 - The 5-kg cylinder is initially at rest when it is...Ch. 17.4 - Prob. 75PCh. 17.4 - Prob. 76PCh. 17.4 - Disk D turns with a constant clockwise angular...Ch. 17.4 - Prob. 78PCh. 17.4 - Prob. 79PCh. 17.4 - Prob. 80PCh. 17.4 - Prob. 81PCh. 17.4 - Prob. 82PCh. 17.4 - Prob. 83PCh. 17.4 - Prob. 84PCh. 17.4 - Prob. 85PCh. 17.4 - Prob. 86PCh. 17.4 - Prob. 87PCh. 17.4 - The 100-kg pendulum has a center of mass at G and...Ch. 17.5 - The Catherine wheel is a firework that consists of...Ch. 17.5 - The uniform 60-kg slender bar is initially at rest...Ch. 17.5 - Prob. 14FPCh. 17.5 - Prob. 15FPCh. 17.5 - The 20- kg sphere rolls down the inclined plane...Ch. 17.5 - The 200-kg spool has a radius of gyration about...Ch. 17.5 - The 12-kg slender rod is pinned to a small roller...Ch. 17.5 - If the disk in Fig. 17-19 rolls without slipping,...Ch. 17.5 - The 20-kg punching bag has a radius of gyration...Ch. 17.5 - The uniform 150-lb beam is initially at rest when...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The tire has a weight of 30 lb and a radius of...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - Solve Prob.17-96 if the cord and force P = 50 N...Ch. 17.5 - The spool has a mass of 100 kg and a radius of...Ch. 17.5 - The 12-kg uniform bar is supported by a roller at...Ch. 17.5 - A force of F= 10 N is applied to the 10-kg ring as...Ch. 17.5 - If the coefficient of static friction at C is s =...Ch. 17.5 - The 25-lb slender rod has a length of 6 ft. Using...Ch. 17.5 - The 15-lb circular plate is suspended from a pin...Ch. 17.5 - If P = 30 lb, determine the angular acceleration...Ch. 17.5 - If the coefficient of static friction between the...Ch. 17.5 - The uniform bar of mass m and length L is balanced...Ch. 17.5 - Solve Prob.17-106 if the roller is removed and the...Ch. 17.5 - The semicircular disk having a mass of 10 leg is...Ch. 17.5 - The 500-kg concrete culvert has a mean radius of...Ch. 17.5 - The 15-lb disk rests on the 5-lb plate. A cord is...Ch. 17.5 - The semicircular disk having a mass of 10 kg is...Ch. 17.5 - The circular concrete culvert rols with an angular...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - The uniform disk of mass m is rotating with an...Ch. 17.5 - A cord is wrapped around each of the two 10-kg...Ch. 17.5 - The disk of mass m and radius r rolls without...Ch. 17.5 - The uniform beam has a weight W. If it is...Ch. 17.5 - The 500-lb beam is supported at A and B when it is...Ch. 17.5 - The solid ball of radius rand mass m rolls without...Ch. 17.5 - By pressing down with the finger at B, a thin ring...Ch. 17.5 - Prob. 1RPCh. 17.5 - Prob. 2RPCh. 17.5 - Prob. 3RPCh. 17.5 - Prob. 4RPCh. 17.5 - Prob. 5RPCh. 17.5 - Prob. 6RPCh. 17.5 - Prob. 7RPCh. 17.5 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The position of the small 0.68-kg blocks in the smooth radial slots in the disk which rotates about a vertical axis at O is used to activate a speed-control mechanism. If each block moves from r = 162 mm to r = 200 mm while the speed of the disk changes slowly from 272 rev/min to 382 rev/min, design the spring by calculating the spring constant k of each spring. The springs are attached to the inner ends of the slots and to the blocks.arrow_forwardThe 13.5-lblb disk rests on the 5-lblb plate. A cord is wrapped around the periphery of the disk and attached to the wall at BB. A torque MM = 40 lb⋅ftlb⋅ft is applied to the disk. Assume the disk does not slip on the plate and the plate rests on the surface at DD having a coefficient of kinetic friction of μkμk = 0.2. Neglect the mass of the Determine the angular acceleration of the disk measured counterclockwise . Determine the time needed for the end CC of the plate to travel 3 ftft and strike the wall.arrow_forwardThe solid homogeneous cylinder is released from rest on the ramp. Determine the magnitudes of the acceleration of the mass center G and the friction force exerted by the ramp on the cylinder. Assume r = 6.8 in., W = 9.1 lb, 0 = 47°, Ms = 0.39, Mk = 0.25. Answers: aG W F= i i Hs HR ft/sec² lbarrow_forward
- The 13.5-lblb disk rests on the 5-lblb plate. A cord is wrapped around the periphery of the disk and attached to the wall at BB. A torque MM = 40 lb⋅ftlb⋅ft is applied to the disk. Assume the disk does not slip on the plate and the plate rests on the surface at DD having a coefficient of kinetic friction of μk = 0.2. Neglect the mass of the cord Determine the angular acceleration of the disk measured counterclockwise . Determine the time needed for the end CC of the plate to travel 3 ftft and strike the wall.arrow_forwardThe homogeneous, solid cylinder with mass m = 4.8 kg and radius r = 0.24 m rolls along the inclined surface without slipping. If the initial angular velocity is w, = 2 rad/s (counterclockwise), and after a certain time lapse the angular velocity is w2 = 2.2 rad/s (clockwise), determine the magnitude of the linear impulse due to the frictional force during this time period. Let 0 = 46°.arrow_forwardThe 200-kg spool has a radius of gyration about its mass center of kg = 300 mm. If the couple moment is applied to the spool and the coefficient of kinetic friction between the spool and the ground is μ = 0.2, determine the angular acceleration of the spool, the acceleration of G and the tension in the cable. 0.4 m B 0.6 m M = 450 N-marrow_forward
- The 28-kg wheel is rolling under the constant moment of M = 84 N.m. The wheel has radius r = 0.53 m, has mass center at point G, and the radius of gyration is KG = 0.25 m. The coefficients of friction between the wheel and the ground is g = 0.39 and μ = 0.17. If the wheel rolls without slipping, determine the necessary static frictional force between the wheel and the ground. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 9.81 m/s². M Your Answer: Answer G units 1arrow_forwardThe 25-kg wheel is rolling under the constant moment of M = 73 N-m. The wheel has radius r= 0.52 m, has mass center at point G, and the radius of gyration is kG = %3D 0.21 m. The coefficients of friction between the wheel and the ground is ls = 0.26 and lk = 0.18. If the wheel rolls without slipping, determine the angular acceleration of the wheel (in rad/s²). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². M G Your Answer: Answerarrow_forwardH3arrow_forward
- The 17-kg wheel is rolling under the constant moment of M = 85 N-m. The wheel has radius r= 0.50 m, has mass center at point G, and the radius of gyration is kg = 0.20 m. The coefficients of friction between the wheel and the ground is ls = 0.27 and Hk; = 0.22. If the wheel rolls while slipping, determine the angular acceleration of the wheel (in rad/s?). Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s?. M Garrow_forwardThe 214-kg wheel has a radius of gyration about its center O of ko = 260 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 94 N•m, it starts rolling from rest. Determine the average friction force that the ground applies to the wheel if it has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s². M Your Answer: Answer unitsarrow_forwardThe 30-kg wheel is rolling under the constant moment of M = 99 N-m. The wheel has radius r= 0.45 m, has mass center at point G, and the radius of gyration is kg = 0.23 m. The coefficients of friction between the wheel and the ground is ls = 0.40 and Hk; = 0.12. If the wheel rolls without slipping, determine the necessary static frictional force between the wheel and the ground. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper unit. Take g = 9.81 m/s?. Marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY