Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 67AP
(a)
To determine
The Mach angle of the shock wave from meteoroid in the lower atmosphere.
(b)
To determine
The Mach angle of the shock wave from meteoroid produces in water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) Seismographs measure the arrival times of earthquakes with a precision of 0.100 s. To get the distance to the epicenter of the quake, they compare the arrival times of S- and P-waves, which travel at different speeds. If S- and P-waves travel at 4.00 and 7.20 km/s, respectively, in the region considered, how precisely can the distance to the source of the earthquake be determined? (b) Seismic waves from underground detonations of nuclear bombs can be used to locate the test site and detect violations of test bans. Discuss whether your answer to (a) implies a serious limit to such detection. (Note also that the uncertainty is greater if there is an uncertainty in the propagation speeds of the S- and P-waves.)
On December 26, 2004, a great earthquake occurredoff the coast of Sumatra and triggered immense waves (tsunami) thatkilled more than 200,000 people. Satellites observing these waves fromspace measured 800 km from one wave crest to the next and a periodbetween waves of 1.0 hour. What was the speed of these waves in m>sand in km/h? Does your answer help you understand why the wavescaused such devastation?
This is possibly a different atmosphere from ours. In any case, the speed of sound is computer-generated, and is 454 m/s this time. Light travels for us instantaneously.
You see a lightning flash, and 7.6 seconds later, you hear the thunderbolt. How far away was the lightning (in meters)?
Chapter 17 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 17.1 - If you blow across the top of an empty soft-drink...Ch. 17.3 - A vibrating guitar string makes very little sound...Ch. 17.3 - Increasing the intensity of a sound by a factor of...Ch. 17.4 - Consider detectors of water waves at three...Ch. 17.4 - You stand on a platform at a train station and...Ch. 17.4 - An airplane flying with a constant velocity moves...Ch. 17 - Prob. 1OQCh. 17 - Prob. 2OQCh. 17 - Prob. 3OQCh. 17 - What happens to a sound wave as it travels from...
Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bat flying at 5.05 m/s is chasing an insect flying in the same direction. The bat emits a 39.8-kHz chirp and receives back an echo at 40.6 kHz. (Take the speed of sound in air to be v = 343 m/s.) (a) What is the speed of the insect? m/s(b) Will the bat be able to catch the insect? Yes No Explain.arrow_forwardThe atmosphere of Mars is much less dense than the atmosphere of the Earth so the speed of sound on Mars is only 240 meters per second. Valles Marineris is a large canyon on Mars that at its widest part is 540 kilometers. If you were at the edge of Valles Marineris and yelled, “There’s no place like El Centro!”, how long would you have to wait to hear the echo?arrow_forwardYou place your ear onto a steel railroad track and hear the sound of a distant train through the rails Δt = 3.5 seconds before you do through the air. The speed of sound in steel is vs = 6100 m/s, and and the air temperature is 48° C. Find the distance, D, to the train in meters.arrow_forward
- As you zip through space in your PPS (personal propulsion suit), your pulse rate as you count it is 111 bpm (beats per minute). This high pulse rate serves as objective evidence of your excitement. However, an observer on the Moon, an expert in pulse rate telemetry, measures your pulse rate as slower. In fact, she detects only 0.515 times the rate you count and claims that you must be pretty calm in spite of everything that is going on. How fast are you moving with respect to the Moon? speed relative to the Moon: m/sarrow_forwardAn earthquake emits both S-waves and P-waves which travel at different speeds through the Earth. A P-wave travels at 9 000 m/s and an S-wave travels at 5 000 m/s. If P-waves are received at a seismic station 1.00 minute before an S-wave arrives, how far away is the earthquake center?arrow_forwardAs you zip through space in your PPS (personal propulsion suit), your pulse rate as you count it is 117 bpm (beats per minute). This high pulse rate serves as objective evidence of your excitement. However, an observer on the Moon, an expert in pulse rate telemetry, measures your pulse rate as slower. In fact, she detects only 0.525 times the rate you count and claims that you must be pretty calm in spite of everything that is going on. How fast are you moving with respect to the Moon? m/s speed relative to the Moon:arrow_forward
- Consider a normal shock wave in air. The upstream conditions are given by M1=3, p1 = 1 atm, and p1 = 1.23 kg/m³. Calculate the downstream values of P2, T2, p2, M2, u2, Poz and Toz. (Anderson 3.4)arrow_forwardSuppose you hear a clap of thunder 16.2 seconds after seeing the associated lightning stroke. The speed of the light is air is 300000000 m/s. How far are you from the lightning strike?arrow_forwardMany galaxies have supermassive black holes at their centres.As material swirls around such a black hole,it is heated,become ionized and generates strong magnetic fields.the resulting magnetic forces steer some of the material into high speeds jets that blast out of the galaxy and into intergalactic space.The light we observe from the jet in fig.has frequency of 6.66(10^14 hz) (in the far ultra voilet region of the electromagnetic spectrum)but in the reference frame of the jet material the light has frequency of 5.55(10^13 hz)(in the infrared).What is the speed of the jet material with respect to us?arrow_forward
- As you zip through space in your PPS (personal propulsion suit), your pulse rate as you count it is 119 bpm (beats per minute). This high pulse rate serves as objective evidence of your excitement. However, an observer on the Moon, an expert in pulse rate telemetry, measures your pulse rate as slower. In fact, she detects only 0.547 times the rate you count and claims that you must be pretty calm in spite of everything that is going on. How fast are you moving with respect to the Moon?arrow_forwardAfter Dragonfly lands and is unfolded from its carrier, it flies away at 3.368 m/s. We know that the buzzing sound it makes is at 499.07 Hz, thanks to laboratory testing. The microphone on the stationary carrier detects a frequency of 492.8 Hz. What is the speed of sound at the surface of Titan?arrow_forwardOn December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 km from one wave crest to the next and a period between waves of 1.0 hour. The speed of the waves were 800 km/h. How does the speed of the wave help you understand why the waves caused such devastation?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY