Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 13P
To determine
The position close to the sidewalk can the flowerpot fall before the warning reaches the man.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm
to take some readings while you stay dry at home. While Clark is at the center of the storm, he sees and hears lightning strike a
tree that is 150 m from where he is standing. You are 132 km from the tree. How long does it take for the sound to reach Clark?
Assume the speed of sound is 343 m/s.
How long does it take for the light to reach you?
S
A LaGuardia Physics Professor drops a stone into a well. How deep is the well if the Professor hears
the sound from the stone hitting the bottom of the well 3.05 s later? Neglect the air resistance and
take the free fall acceleration g = 9.81 m/s². The air temperature is T = 15.5°C.
The depth of the well, h = 1037
How long did it take for the sound to travel back?
The time, t = 3
x Units s
Submit Question
x Units m
Question Help: Message instructor
✓✓.
An enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm to take some readings while you stay dry at home. While Clark is at the center of the storm, he sees and hears lightning strike a tree that is 184 m from where he is standing. You are 144 km from the tree. How long does it take for the sound to reach Clark? Assume the speed of sound is 343 m/s.________________ sHow long does it take for the light to reach you?_____________ s
Chapter 17 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 17.1 - If you blow across the top of an empty soft-drink...Ch. 17.3 - A vibrating guitar string makes very little sound...Ch. 17.3 - Increasing the intensity of a sound by a factor of...Ch. 17.4 - Consider detectors of water waves at three...Ch. 17.4 - You stand on a platform at a train station and...Ch. 17.4 - An airplane flying with a constant velocity moves...Ch. 17 - Prob. 1OQCh. 17 - Prob. 2OQCh. 17 - Prob. 3OQCh. 17 - What happens to a sound wave as it travels from...
Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- During a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forwardFemale Aedes aegypti mosquitoes emit a buzz at about 4.00102 Hz, whereas male A. aegypti mosquitoes typically emit a buzz at about 6.00102 Hz. As a female mosquito is approaching a stationary male mosquito, is it possible that he mistakes the female for a male because of the Doppler shift of the sound she emits? How fast would the female have to be traveling relative to the male for him to make this mistake? Assume the speed of sound in the air is 343 m/s.arrow_forwardA siren emits a sound of frequency 1.44103 Hz when it is stationary with respect to an observer. The siren is moving away from a person and toward a cliff at a speed of 15 m/s. Both the cliff and the observer are at rest. Assume the speed of sound in air is 343 m/s. What is the frequency of the sound that the person will hear a. coming directly from the siren and b. reflected from the cliff?arrow_forward
- A flowerpot is knocked off a window ledge from a height d = 20.0 m above the sidewalk as shown in Figure. lt falls toward an unsuspecting man of height h = 1.75 m who is standing below. Assume the man requires a time interval of Δt = 0.300 s to respond to the warning. How close to the sidewalk can the flowerpot fall before it is too late for a warning shouted from the balcony to reach the main in time?arrow_forwardThe Cubs are putting on a fireworks show at Wrigley Field after the game on a brisk autumn evening when the temperature is 12 °C (54 °F). After the flash of an explosion, it takes spectators 0.600 s to hear the bang. How far away was the explosion? The speed of sound at 21 °C is 344 m/s.arrow_forwardStanding at the base of one of the cliffs of Mt. Arapiles in Victoria, Australia, a hiker hears a rock break loose from a height of 105.0 m. He can't see the rock right away, but then does, 1.50 s later. (a) How far above the hiker is the rock when he can hear it? (b) How much time does he have to move before the rock hits his head?arrow_forward
- ASK YOUR TEACHER (a) A soccer player kicks a rock horizontally off a 38 m high cliff into a pool of water. If the player hears the sound of the splash 2.93 s later, what was the initial speed given to the rock (in m/s)? Assume the speed of sound in air is 343 m/s. m/s MY NOTES (b) What If? If the temperature near the cliff suddenly falls to 0°C, reducing the speed of sound to 331 m/s, what would the initial speed of the rock have to be (in m/s) for the soccer player to hear the sound of the splash 2.93 s after kicking the rock? Need Help? m/s Read It PRACTICE ANOTHER Watch Itarrow_forwardOn December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 km from one wave crest to the next and a period between waves of 1.0 hour. The speed of the waves were 800 km/h. How does the speed of the wave help you understand why the waves caused such devastation?arrow_forwardThere was an accident, and NASA engineers are trying to sort out where two of their Mars Rovers, Tango and Foxtrot, have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed?arrow_forward
- Lightning storm creates both lightning and thunder. You see the lightning almost immediately since light travels at 3 × 108m · s−1. After seeing the lightning, you count 5 s and then you hear the thunder. Calculate the distance to the location of the storm. Convert into kilometers.arrow_forwardAn earthquake generates two types of seismic waves, P-waves and S-waves. Their speeds are 8000 m/s and 5000 m/s, respectively. The waves reach the observation point with a time difference of 1.8 min. Assume that the waves travel in a straight line. How far from the observation point the earthquake occurred?arrow_forwardThere was an accident and NASA engineers are trying to sort out where two of their Mars Rovers (named 'Tango' and 'Foxtrot') have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed? Tango landed at site A while Foxtrot landed at site B. Tango landed at site B while Foxtrot landed at site A. Both Tango and Foxtrot landed at site A. O Both Tango and Foxtrot landed at site B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY