Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 55AP
(a)
To determine
The distance to an object from which the echo pulse returns after
(b)
To determine
The duration of the emitted pulse.
(c)
To determine
Thespatial length of such a pulse.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There was an accident, and NASA engineers are trying to sort out where two of their Mars Rovers, Tango and Foxtrot, have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed?
On a 20°C°C night, a bat hovering in the air emits an ultrasonic chirp that has a
frequency of 45 kHzkHz. It hears an echo 60 msms later.
Suppose the object is an insect flying straight away from the bat. What is the
insect's speed if the ultrasonic echo is shifted down in frequency by 750 Hz?
an ultrasonic scan uses the echo waves coming from something moving inside the body and the waves that are directly received from the transmitter to form a measurable beat frequency. this allows the speed of the internal structure to be isolated and analyzed. the speed of the ultrasound waves in tissue is about 1540 m/s. what is the beat frequency detected when wves with a frequency of 4.40 MHz are used to scan a fetal heartbeat (moving at a speed of 9.30 cm/s)f(beat) = |f1 - f2|
Chapter 17 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 17.1 - If you blow across the top of an empty soft-drink...Ch. 17.3 - A vibrating guitar string makes very little sound...Ch. 17.3 - Increasing the intensity of a sound by a factor of...Ch. 17.4 - Consider detectors of water waves at three...Ch. 17.4 - You stand on a platform at a train station and...Ch. 17.4 - An airplane flying with a constant velocity moves...Ch. 17 - Prob. 1OQCh. 17 - Prob. 2OQCh. 17 - Prob. 3OQCh. 17 - What happens to a sound wave as it travels from...
Ch. 17 - Prob. 5OQCh. 17 - Prob. 6OQCh. 17 - Prob. 7OQCh. 17 - Prob. 8OQCh. 17 - Prob. 9OQCh. 17 - Prob. 10OQCh. 17 - Prob. 11OQCh. 17 - Prob. 12OQCh. 17 - Prob. 13OQCh. 17 - Prob. 14OQCh. 17 - Prob. 1CQCh. 17 - Prob. 2CQCh. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - Write an expression that describes the pressure...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 7PCh. 17 - Prob. 8PCh. 17 - Prob. 9PCh. 17 - Prob. 10PCh. 17 - Prob. 11PCh. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Prob. 14PCh. 17 - Prob. 15PCh. 17 - Prob. 16PCh. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Prob. 19PCh. 17 - Prob. 20PCh. 17 - The intensity of a sound wave at a fixed distance...Ch. 17 - Prob. 22PCh. 17 - Prob. 23PCh. 17 - Prob. 24PCh. 17 - The power output of a certain public-address...Ch. 17 - Prob. 26PCh. 17 - Prob. 27PCh. 17 - Prob. 28PCh. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - A fireworks rocket explodes at a height of 100 m...Ch. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - Prob. 37PCh. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - Prob. 40PCh. 17 - Prob. 41PCh. 17 - Prob. 42PCh. 17 - Prob. 43PCh. 17 - Prob. 44PCh. 17 - Prob. 45PCh. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48APCh. 17 - Prob. 49APCh. 17 - Prob. 50APCh. 17 - Prob. 51APCh. 17 - Prob. 52APCh. 17 - Prob. 53APCh. 17 - A train whistle (f = 400 Hz) sounds higher or...Ch. 17 - Prob. 55APCh. 17 - Prob. 56APCh. 17 - Prob. 57APCh. 17 - Prob. 58APCh. 17 - Prob. 59APCh. 17 - Prob. 60APCh. 17 - Prob. 61APCh. 17 - Prob. 62APCh. 17 - Prob. 63APCh. 17 - Prob. 64APCh. 17 - Prob. 65APCh. 17 - Prob. 66APCh. 17 - Prob. 67APCh. 17 - Prob. 68APCh. 17 - Prob. 69APCh. 17 - Prob. 70APCh. 17 - Prob. 71CPCh. 17 - Prob. 72CPCh. 17 - Prob. 73CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ultrasonic scan uses the echo waves coming from something moving (such as the beating heart of a fetus) inside the body and the waves that are directly received from the transmitter to form a measurable beat frequency. This allows the speed of the internal structure to be isolated and analyzed. The speed of the ultrasound waves in tissue is about 1540 m/s. What is the beat frequency ?beats detected when waves with a frequency of 3.80 MHz are used to scan a fetal heartbeat (moving at a speed of ±8.50 cm/s)? hint that came with it: In this problem there's a stationary source of ultrasound that reflects sound off of a moving object which then returns back to the ultrasound device to measure the frequency. There are 2 Doppler shifts that need to be considered. First the stationary source and the moving observer. Second, when the sound reflects off, the moving object now becomes the source and the ultrasound device becomes the observer. In this shift, the frequency measured by the…arrow_forwardThe frequency of the siren of an ambulance is 900 Hz and is approaching you. You are standing on a corner and observe a frequency of 960 Hz. What is the speed of the ambulance (in mph) if the speed of sound is v = 340.00 m/s?arrow_forwardThe speed of ultrasound in human body is 1540 m/s. A procedure is performed with a frequency of 2 MHz is used. To monitor the heart rate of a fetus: the maximum speed of a beating heart is 8 cm/s. What is the maximum beat frequency is Hz?arrow_forward
- The bat uses its ultrasonic radar instead of sight when flying in the dark. If the bat's own flight speed is 5.9 m / s and another animal flies towards the bat at a speed of 2.0 m / s, what frequency does the bat detect when reflected from the target when the frequency of the sound emitted by the bat is 45.9 kHz? Use a speed of 340 m / s. Give the answer in kilohertz to one decimal place.arrow_forwardHorseshoe bats use the Doppler effect to determine their location. A Horseshoe bat flies toward a wall at a speed of 15.0 m/s while emitting a sound of frequency 19.6 kHz. What is the beat frequency between the emission frequency and the echo? The speed of sound at T = 20°C is v = 343 m/s. (See Appendix B Table B.5.)arrow_forwardThere was an accident and NASA engineers are trying to sort out where two of their Mars Rovers (named 'Tango' and 'Foxtrot') have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed? Tango landed at site A while Foxtrot landed at site B. Tango landed at site B while Foxtrot landed at site A. Both Tango and Foxtrot landed at site A. O Both Tango and Foxtrot landed at site B.arrow_forward
- If a stationary dolphin emits a call at a sound frequency of 53 kHz. The sound wave reflects off a fish moving directly towards the dolphin. And the sound wave echo returns at a frequency of 55 kHz. What is the speed of the fish? The speed of sound is 343 m/s.arrow_forwardA bat emits a sound at a frequency of 39.0 kHz as it approaches a wall. The bat detects beats with a frequancy of 1070 Hz between the sound it emits and the echo bouncing from the wall. What is the speed of the bat (in m/s) if the speed of sound in air is 343 m/s?arrow_forwardA Girl Scout is taking a 10.00-km hike to earn a merit badge. While on the hike, she sees a cliff some distance away. She wishes to estimate the time required to walk to the cliff. She knows that the speed of sound is approximately 343 meters per second. She yells and finds that the echo returns after approximately 2.00 seconds. If she can hike 1.00 km in 10 minutes, how long would it take her to reach the cliff?arrow_forward
- Suppose a bat emits ultrasound at frequency fbe = 81.28 kHz while flying with velocity vb = (12.16 m/s)i as it chases a moth that flies with velocity vm = (3 m/s)i. What frequency fmd does the moth detect? What frequency fbd does the bat detect in the returning echo from the moth? Assume the speed of sound is 343 m/s. Round all your answers off to two decimal places.arrow_forwardThe intensity of a sound wave, as it strikes a circular ear drum, is 0.65 W/m2. The amount of energy carried in this wave is 6 × 10-6 J, and the sound lasts for one second. Part (a) Calculate the radius of the ear drum, in meters. Part (b) If the sound wave travels at 326 m/s and has a wavelength of 1.1 m, calculate its frequency.arrow_forwardStanding at a crosswalk, you hear a frequency of 590 Hz from the siren of an approaching ambulance. After the ambulance passes, the observed frequency of the siren is 501 Hz. Determine the ambulance's speed from these observations. (Take the speed of sound to be 343 m/s.) m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY