Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.45QE
Interpretation Introduction
Interpretation:
The balanced chemical equation and the value of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider the following reactions.
NiSO3(s) →NiO (s) + SO2 (g) ∆H= 162.0 kJ
SO2 (g) → 1/8 S8(s) + O2 (g) ∆H= 290.0 kJ
2Ni (s) + O2 (g) → 2NiO (s) ∆H= -478.0 kJ
A) Calculate ∆H (in kJ) for the reaction.
8Ni (s) + S8(s) + 12O2 (g) →8NiSO3 (s)
B)
Calculate ∆H (in kJ) for the decomposition reaction of 2.00 g of NiSO3(s) according to the reaction.
8NiSO3 (s)→ 8Ni (s) + S8(s) + 12O2 (g)
C)
Carbon tetrachloride (CCl4) was at one time used as a fire-extinguishing agent.
The molar heat capacity is 131.3 J/(mol°C). Calculate the amount of energy in kJ required to raise the temperature of 22.0 g of CCl4 from 22.0 °C to 66.0 °C.
Chapter 17 Solutions
Chemistry: Principles and Practice
Ch. 17 - Prob. 17.1QECh. 17 - How is the sign of q, heat, defined? How does it...Ch. 17 - Identify the sign of the work when a fuel-oxygen...Ch. 17 - What is the sign of the work when a refrigerator...Ch. 17 - When a rocket is launched, the burning gases are...Ch. 17 - Prob. 17.6QECh. 17 - Prob. 17.7QECh. 17 - Prob. 17.8QECh. 17 - Prob. 17.9QECh. 17 - Explain why absolute enthalpies and energies...
Ch. 17 - Explain why absolute entropies can be measured.Ch. 17 - Under what conditions is the entropy of a...Ch. 17 - Prob. 17.13QECh. 17 - Prob. 17.14QECh. 17 - Prob. 17.15QECh. 17 - Prob. 17.16QECh. 17 - Prob. 17.17QECh. 17 - Prob. 17.18QECh. 17 - The free energy for a reaction decreases as...Ch. 17 - The equilibrium constant for a reaction decreases...Ch. 17 - When solid sodium acetate crystallizes from a...Ch. 17 - Prob. 17.22QECh. 17 - Prob. 17.23QECh. 17 - Prob. 17.24QECh. 17 - Prob. 17.25QECh. 17 - Prob. 17.26QECh. 17 - Prob. 17.27QECh. 17 - Calculate w for the following reactions that occur...Ch. 17 - How much work is done if a balloon expands from...Ch. 17 - Prob. 17.30QECh. 17 - Prob. 17.31QECh. 17 - A piston initially contains 688 mL of gas at 1.22...Ch. 17 - A 220-L cylinder contains an ideal gas at a...Ch. 17 - Prob. 17.34QECh. 17 - Prob. 17.35QECh. 17 - For a process, w = 34 J and q = 109 J. What is E...Ch. 17 - Prob. 17.37QECh. 17 - Prob. 17.38QECh. 17 - A reaction between a solid and a liquid produces...Ch. 17 - Prob. 17.40QECh. 17 - Prob. 17.41QECh. 17 - When an ideal gas is compressed at constant...Ch. 17 - Prob. 17.43QECh. 17 - Prob. 17.44QECh. 17 - Prob. 17.45QECh. 17 - Prob. 17.46QECh. 17 - Prob. 17.47QECh. 17 - Prob. 17.48QECh. 17 - What is the sign of the entropy change for each of...Ch. 17 - For each process, tell whether the entropy change...Ch. 17 - Prob. 17.51QECh. 17 - Prob. 17.52QECh. 17 - Prob. 17.53QECh. 17 - Prob. 17.54QECh. 17 - Use the data in Appendix G to calculate the...Ch. 17 - Prob. 17.56QECh. 17 - Prob. 17.57QECh. 17 - Prob. 17.58QECh. 17 - Calculate G for the following reactions and state...Ch. 17 - Prob. 17.60QECh. 17 - Prob. 17.63QECh. 17 - Prob. 17.64QECh. 17 - Prob. 17.65QECh. 17 - Prob. 17.66QECh. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - Predict the temperature at which the reaction in...Ch. 17 - Prob. 17.72QECh. 17 - Prob. 17.73QECh. 17 - Prob. 17.74QECh. 17 - Prob. 17.75QECh. 17 - Prob. 17.76QECh. 17 - Prob. 17.77QECh. 17 - Prob. 17.78QECh. 17 - Prob. 17.79QECh. 17 - Prob. 17.80QECh. 17 - Prob. 17.81QECh. 17 - Determine whether the condensation of nitromethane...Ch. 17 - At 298 K, G = 70.52 kJ for the reaction 2NO(g) +...Ch. 17 - Prob. 17.84QECh. 17 - Prob. 17.85QECh. 17 - Prob. 17.86QECh. 17 - Prob. 17.87QECh. 17 - Prob. 17.88QECh. 17 - For each reaction, an equilibrium constant at 298...Ch. 17 - For each reaction, an equilibrium constant at 298...Ch. 17 - Prob. 17.91QECh. 17 - Use the data in Appendix G to calculate the value...Ch. 17 - Suppose you have an endothermic reaction with H =...Ch. 17 - Suppose you have an endothermic reaction with H =...Ch. 17 - Suppose you have an exothermic reaction with H =...Ch. 17 - Suppose you have an exothermic reaction with H =...Ch. 17 - Calculate G and G at 303 C for the following...Ch. 17 - Calculate G and G at 37 C for the following...Ch. 17 - Prob. 17.101QECh. 17 - Prob. 17.102QECh. 17 - A 220-ft3 sample of gas at standard temperature...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - Elemental boron, in the form of thin fibers, can...Ch. 17 - Calculate the standard Gibbs free-energy change...Ch. 17 - The thermite reaction is 2Al(s) + Fe2O3(s) ...Ch. 17 - Chemists and engineers who design nuclear power...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Solid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forwardDefine the term entropy, and give an example of a sample of matter that has zero entropy. What are the units of entropy? How do they differ from the units of enthalpy?arrow_forwardThe decomposition of ozone, O3, to oxygen, O2, is an exothermic reaction. What is the sign of q? If you were to touch a flask in which ozone is decomposing to oxygen, would you expect the flask to feel warm or cool?arrow_forward
- When most biological enzymes are heated, they lose their catalytic activity. This process is called denaturing. The change original enzyme new form that occurs on heating is endothermic and spontaneous. Is the structure of the original enzyme or its new form more ordered (has the smaller positional probability)? Explain.arrow_forwardWhen a gas expands, what is the sign of w? Why? When a gas contracts, what is the sign of w? Why? What are the signs of q and w for the process of boiling water?arrow_forwardHow is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forward
- Coal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardWhen vapors from hydrochloric acid and aqueous ammonia come in contact, they react, producing a white cloud of solid NH4C1 (Figure 18.9). HCI(g) + NH3(g) NH4Cl(s) Defining the reactants and products as the system under study: (a) Predict whether S(system), S(surroundings), S(universe), rH, and rG (at 298 K) are greater than zero, equal to zero, or less than zero; and explain your prediction. Verify your predictions by calculating values for each of these quantities. (b) Calculate the value of Kp for this reaction at 298 K.arrow_forwardEnthalpy changes often help predict whether or not a process will be spontaneous. What type of reaction is more likely to be spontaneous: an exothermic or an endothermic one? Provide two examples that support your assertion and one counterexample.arrow_forward
- The formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardA green plant synthesizes glucose by photosynthesis, as shown in the reaction: 6CO2(g) + 6H2O(l) C6H12O6(s) + 6O2(g) Animals use glucose as a source of energy: C6H12O6(s) + 6O2(g) 6CO2(g) + 6HO2(l) If we were to assume that both of these processes occur to the same extent in a cyclic process, what thermodynamic property must have a nonzero value?arrow_forwardAcetic acid, a weak acid, was added to a beaker containing water at 25 C, giving a solution containing molecular acetic acid, hydronium ion, and acetate ion at equilibrium. The temperature did not change. (a) Is the solution process exothermic or endothermic? (b) Was the dissolving process and partial ionization spontaneous? (c) Did the entropy of the system increase or decrease? (d) Did the entropy of the universe increase or decrease?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY