Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 17.104QE
What is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the explosive decomposition of TNT? Use your knowledge of TNT and the chemical equation, particularly the phases, to answer this question. (
2C7H5N3O6(s) → 3N2(g) + 5H2O(ℓ) + 7C(s) + 7CO(g)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Chemistry: Principles and Practice
Ch. 17 - Prob. 17.1QECh. 17 - How is the sign of q, heat, defined? How does it...Ch. 17 - Identify the sign of the work when a fuel-oxygen...Ch. 17 - What is the sign of the work when a refrigerator...Ch. 17 - When a rocket is launched, the burning gases are...Ch. 17 - Prob. 17.6QECh. 17 - Prob. 17.7QECh. 17 - Prob. 17.8QECh. 17 - Prob. 17.9QECh. 17 - Explain why absolute enthalpies and energies...
Ch. 17 - Explain why absolute entropies can be measured.Ch. 17 - Under what conditions is the entropy of a...Ch. 17 - Prob. 17.13QECh. 17 - Prob. 17.14QECh. 17 - Prob. 17.15QECh. 17 - Prob. 17.16QECh. 17 - Prob. 17.17QECh. 17 - Prob. 17.18QECh. 17 - The free energy for a reaction decreases as...Ch. 17 - The equilibrium constant for a reaction decreases...Ch. 17 - When solid sodium acetate crystallizes from a...Ch. 17 - Prob. 17.22QECh. 17 - Prob. 17.23QECh. 17 - Prob. 17.24QECh. 17 - Prob. 17.25QECh. 17 - Prob. 17.26QECh. 17 - Prob. 17.27QECh. 17 - Calculate w for the following reactions that occur...Ch. 17 - How much work is done if a balloon expands from...Ch. 17 - Prob. 17.30QECh. 17 - Prob. 17.31QECh. 17 - A piston initially contains 688 mL of gas at 1.22...Ch. 17 - A 220-L cylinder contains an ideal gas at a...Ch. 17 - Prob. 17.34QECh. 17 - Prob. 17.35QECh. 17 - For a process, w = 34 J and q = 109 J. What is E...Ch. 17 - Prob. 17.37QECh. 17 - Prob. 17.38QECh. 17 - A reaction between a solid and a liquid produces...Ch. 17 - Prob. 17.40QECh. 17 - Prob. 17.41QECh. 17 - When an ideal gas is compressed at constant...Ch. 17 - Prob. 17.43QECh. 17 - Prob. 17.44QECh. 17 - Prob. 17.45QECh. 17 - Prob. 17.46QECh. 17 - Prob. 17.47QECh. 17 - Prob. 17.48QECh. 17 - What is the sign of the entropy change for each of...Ch. 17 - For each process, tell whether the entropy change...Ch. 17 - Prob. 17.51QECh. 17 - Prob. 17.52QECh. 17 - Prob. 17.53QECh. 17 - Prob. 17.54QECh. 17 - Use the data in Appendix G to calculate the...Ch. 17 - Prob. 17.56QECh. 17 - Prob. 17.57QECh. 17 - Prob. 17.58QECh. 17 - Calculate G for the following reactions and state...Ch. 17 - Prob. 17.60QECh. 17 - Prob. 17.63QECh. 17 - Prob. 17.64QECh. 17 - Prob. 17.65QECh. 17 - Prob. 17.66QECh. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - Predict the temperature at which the reaction in...Ch. 17 - Prob. 17.72QECh. 17 - Prob. 17.73QECh. 17 - Prob. 17.74QECh. 17 - Prob. 17.75QECh. 17 - Prob. 17.76QECh. 17 - Prob. 17.77QECh. 17 - Prob. 17.78QECh. 17 - Prob. 17.79QECh. 17 - Prob. 17.80QECh. 17 - Prob. 17.81QECh. 17 - Determine whether the condensation of nitromethane...Ch. 17 - At 298 K, G = 70.52 kJ for the reaction 2NO(g) +...Ch. 17 - Prob. 17.84QECh. 17 - Prob. 17.85QECh. 17 - Prob. 17.86QECh. 17 - Prob. 17.87QECh. 17 - Prob. 17.88QECh. 17 - For each reaction, an equilibrium constant at 298...Ch. 17 - For each reaction, an equilibrium constant at 298...Ch. 17 - Prob. 17.91QECh. 17 - Use the data in Appendix G to calculate the value...Ch. 17 - Suppose you have an endothermic reaction with H =...Ch. 17 - Suppose you have an endothermic reaction with H =...Ch. 17 - Suppose you have an exothermic reaction with H =...Ch. 17 - Suppose you have an exothermic reaction with H =...Ch. 17 - Calculate G and G at 303 C for the following...Ch. 17 - Calculate G and G at 37 C for the following...Ch. 17 - Prob. 17.101QECh. 17 - Prob. 17.102QECh. 17 - A 220-ft3 sample of gas at standard temperature...Ch. 17 - What is the sign of the standard Gibbs free-energy...Ch. 17 - Elemental boron, in the form of thin fibers, can...Ch. 17 - Calculate the standard Gibbs free-energy change...Ch. 17 - The thermite reaction is 2Al(s) + Fe2O3(s) ...Ch. 17 - Chemists and engineers who design nuclear power...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Define the following: a. spontaneous process b. entropy c. positional probability d. system e. surroundings f. universearrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the synthesis of ammonia? 3H2(g) + N2(g) 2NH3(g)arrow_forwardFor each of the following processes, identify the systemand the surroundings. Identify those processes that arespontaneous. For each spontaneous process, identify theconstraint that has been removed to enable the process to occur: Ammonium nitrate dissolves in water. Hydrogen and oxygen explode in a closed bomb. A rubber band is rapidly extended by a hangingweight. The gas in a chamber is slowly compressed by aweighted piston. A glass shatters on the floor.arrow_forward
- What is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the combustion of acetaldehyde? CH3CHO(l)+52O2(g)2CO2+2H2O(l)arrow_forwardConsider the reaction of 2 mol H2(g) at 25C and 1 atm with 1 mol O2(g) at the same temperature and pressure to produce liquid water at these conditions. If this reaction is run in a controlled way to generate work, what is the maximum useful work that can be obtained? How much entropy is produced in this case?arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forward
- The combustion of acetylene, C2H2, is a spontaneous reaction given by the equation 2C2H2(g)+5O2(g)4CO2(g)+2H2O(l) As expected for a combustion, the reaction is exothermic. What is the sign of H? What do you expect for the sign of S? Explain the spontaneity of the reaction in terms of the enthalpy and entropy changes.arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forwardWhat is the sign of the standard Gibbs free-energy change at low temperatures and at high temperatures for the decomposition of phosgene? COCl2(g)CO(g)+Cl2(g)arrow_forward
- What is meant by the standard free-energy change G for a reaction? What is meant by the standard free energy of formation Gf of a substance?arrow_forwardHow is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forwardThere are millions of organic compounds known, and new ones are being discovered or made at a rate of morethan 100,000 compounds per year. Organic compoundsburn readily in air at high temperatures to form carbondioxide and water. Several classes of organic compoundsare listed, with a simple example of each. Write a balanced chemical equation for the combustion in O2ofeach of these compounds, and then use the data inAppendix J to show that each reaction is product-favoredat room temperature. From these results, it is reasonable to hypothesize thatallorganic compounds are thermodynamically unstable inan oxygen atmosphere (that is, their room-temperaturereaction with O2(g) to form CO2(g) and H2O() isproduct-favored). If this hypothesis is true, how canorganic compounds exist on Earth?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY