Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.28E
Interpretation Introduction
Interpretation:
The value of partition function at the given temperatures is to be calculated.
Concept introduction:
Statistical
Where,
•
•
•
•
It is also called as canonical ensemble partition function.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3. Consider a 2 × 2 square lattice of spins interacting via the Ising
Hamiltonian in the absence of a magnetic field:
H =
-
ΣSi Sj,
(ij)
we have set J = 1.
(a) Write down all the possible configurations and calculate the energy
for each one of them.
(b) Calculate the partition function Z, as a function of temperature,
by summing over all configurations.
(c) Repeat question (3a) and (3b), using periodic boundary condi-
tions.
(1) The molecules in a thermally equilibrated isolated system are confined to just the two
(non-degenerate) energy levels.
lowest
(a) Write down an expression for the partition function q of this system if the energy
levels are separated by an amount ɛ.
(b) If q = 1.142, determine the temperature of the system if the two energy levels
are separated by 8 kJ/mol.
(c) What is q in the limit of very high temperatures?
A certain atom has a triply degenerate ground level, a non-degenerate electronically excited level at 850 cm–1, and a fivefold degenerate level at 1100 cm−1. Calculate the partition function of these electronic states at 2000 K. What is the relative population of each level at 2000 K?
Chapter 17 Solutions
Physical Chemistry
Ch. 17 - Prob. 17.1ECh. 17 - Prob. 17.2ECh. 17 - Prob. 17.3ECh. 17 - Prob. 17.4ECh. 17 - Prob. 17.5ECh. 17 - Prob. 17.6ECh. 17 - Prob. 17.7ECh. 17 - Prob. 17.8ECh. 17 - Prob. 17.9ECh. 17 - Prob. 17.10E
Ch. 17 - Prob. 17.11ECh. 17 - If the ni values are all the same, a shorthand way...Ch. 17 - Prob. 17.13ECh. 17 - Prob. 17.14ECh. 17 - Prob. 17.15ECh. 17 - Prob. 17.16ECh. 17 - Prob. 17.17ECh. 17 - Prob. 17.18ECh. 17 - Prob. 17.19ECh. 17 - Prob. 17.20ECh. 17 - Prob. 17.21ECh. 17 - Prob. 17.22ECh. 17 - Explain why q is a constant for a given system at...Ch. 17 - What is the ratio of ground-state nickel atoms in...Ch. 17 - Ti3+ has the following electronic energy levels:...Ch. 17 - Using the fact that =1/kT, show that equations...Ch. 17 - A one-dimensional particle-in-a-box has a length...Ch. 17 - Prob. 17.28ECh. 17 - Prob. 17.29ECh. 17 - Prob. 17.30ECh. 17 - Prob. 17.31ECh. 17 - What is the value of q at absolute zero? Is it the...Ch. 17 - Prob. 17.33ECh. 17 - Prob. 17.34ECh. 17 - Prob. 17.35ECh. 17 - Prob. 17.36ECh. 17 - Prob. 17.37ECh. 17 - Prob. 17.38ECh. 17 - Prob. 17.39ECh. 17 - Prob. 17.40ECh. 17 - Prob. 17.41ECh. 17 - Prob. 17.42ECh. 17 - What change is there in the Sackur-Tetrode...Ch. 17 - Prob. 17.44ECh. 17 - Prob. 17.45ECh. 17 - Prob. 17.46ECh. 17 - Calculate the thermal de Broglie wavelength of He...Ch. 17 - Prob. 17.48ECh. 17 - Prob. 17.49ECh. 17 - Prob. 17.50ECh. 17 - Prob. 17.51ECh. 17 - Prob. 17.52ECh. 17 - Prob. 17.53ECh. 17 - Use equation 17.56 to determine the change in...Ch. 17 - For an electron that has a velocity of 0.01c where...Ch. 17 - Use the Sackur-Tetrode equation to derive the...Ch. 17 - Prob. 17.57ECh. 17 - Prob. 17.58E
Knowledge Booster
Similar questions
- The rotationa l energy of a linear or spherical molecule with quantum number J is EJ = hBJ(J + 1 ). For a linear molecule. each rotational level has a degeneracy of (2J + 1 ). For a spherical molecule, the degeneracy is (2J + 1 )2 (a) Calculate the ratio of populations of CO2 molecules with J = 4 and J = 2 at 25 °C, given that the rotational constant of CO2 is B = 11.70 GHz. (b) Also calculate the ratio of populations of CH4 molecules with J = 4 and J = 2 at 25 °C, given that the rotational constant of CH4 is 157 GHz.arrow_forwardConsider a system of distinguishable particles having only two non-degenerate levels separated by an energy that is equal to the value of kT at 10 K. Calculate (a) the ratio of populations in two states at (1) 1.0 K, (2) 10 K, (3) 100 K, (b) the molecular partition function at 10 K, (c) the molar energy at 10 K, (d) the molar heat capacity at 10 K, € the molar entropy at 10 K.arrow_forwardDiscuss the relation between the thermodynamic and statistical definitions of entropy.arrow_forward
- The H2O molecule is an asymmetric rotor with rotational constants 27.877 cm−1, 14.512 cm−1, and 9.285 cm−1. Calculate the rotational partition function of the molecule at (i) 25 °C, (ii) 100 °C.arrow_forwardThe NOF molecule is an asymmetric rotor with rotational constants 3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition function of the molecule at (i) 25 °C, (ii) 100 °C.arrow_forward2. The rotational partition function of an ethene molecule is 661 at 25°C. What is the rotational contribution to its molar entropy?arrow_forward
- E e q kT where k is The probability of a molecule having energy E is P (E) Boltzmann's constant (1.38 * 10¯²³J/K) and q is the partition function. A system has three possible energy levels: 0 cm³¹, 100 cm³¹, and 250 cm³¹. The temperature is 300 K. a) Convert each energy level to J/molecule. (Double check your units!) b) Find q, the partition function (sum up the unnormalized probabilities). The degeneracy of all levels = 1 c) Calculate the average energy (expectation value) of a molecule in units of cm³¹. Make sure to use normalized probabilities. d) Plot P vs E. Make sure to use normalized probabilities.arrow_forwardThe methyl chloride molecule, CH3Cl, has three non-degenerate vibrations with harmonic wavenumbers 3088, 1396 and 751 cm–1 respectively and three doubly-degenerate vibrations with harmonic wavenumbers 3183, 1496 and 1036 cm–1 respectively. Calculate the vibrational partition function for the methyl chloride molecule at 1200 K.arrow_forwardsystem A with 100,000 molecules is at equilibrium at 400k with a boltzmann partition function of q=1.156518. Assume that the energy levels for system A are evenly distributed at delta U = 2Kb x T . a) calculate the probability and population distribution for the system? ( use 5 energy levels including ground state) b) calculate the entropy for the system?arrow_forward
- The bond length of O2 is 120.75 pm. Use the high-temperature approximation to calculate the rotational partition function of the molecule at 300 K.arrow_forwardN2O and CO2 have similar rotational constants (12.6 and 11.7 GHz, respect ively) but strikingly different rotational partition functions. Why?arrow_forwardCalculate the rotational partition function of SO2 at 298 K from its rotational constants 2.027 36 cm–1, 0.344 17 cm–1, and 0.293 535 cm–1 and use your result to calculate the rotational contribution to the molar entropy of sulfur dioxide at 25 °C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY