Vector Mechanics for Engineers: Dynamics
Vector Mechanics for Engineers: Dynamics
11th Edition
ISBN: 9780077687342
Author: Ferdinand P. Beer, E. Russell Johnston Jr., Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 16.2, Problem 16.142P
To determine

Find a couple of M.

Expert Solution
Check Mark

Answer to Problem 16.142P

The couple of M=-7.19N.m.

Explanation of Solution

Given information:

The attached rod A mass is=0.8kg

And length is=160mm

Rod BP mass is=1kg

Length is=200mm

Explanation:

First consider the unit vector along the axis of X and Y direction.

So, we have to find the vertical distance from point P and point A(y)

y=[(200mm)1m1000mm]sin300=0.1m

Here, we take the coordinate points as (0,0.1m)

Then the position of the vector rP/A=(0.1m)j

Coordinate points of the point P with the point B is (0.2cos300m,0.2sin300m)

Then the position vector is rP/B=(0.1732m)i(0.1m)j

Then the coordinate points with the point P and point E as (0,-0.16m)

Position vector is rE/A=(0.16m)j

Here, the unit vector k as angular direction in clockwise is negative and it is positive when counter clockwise.

Angular velocity of the rod BP in vector form is

(20rad/s)k

Velocity of the rod BP is

vp=ωBP×rP/Bvp=[(20rad/s)k][(0.1732m)i(0.1m)j]=(3.464m/s)(k×i)+(2m/s)(k×j)=(3.464m/s)j+(2m/s)(i)=(3.464m/s)j(2m/s)i(1)

Formulate the velocity equation of point P

vp=ωAE×rP/A+vP/AEvp=(ωAEk)[(0.1m)j]+uj=(0.1ωAE)(k×j)+uj=(0.1ωAE)(i)+uj=(0.1ωAE)i+uj(2)

Compare the i terms from equation (1) And (2)

2m/s=0.1ωAEωAE=20.1=20rad/s

Compare the equation (1) and (2) for j terms. We get,

u=3.464m/s

So, the angular acceleration is zero.

Formulate the acceleration of the rod BP

ap=[(αBP)(rP/B)]ωBP2rP/Bap={(80rad/s2)k×(0.1732m)i(0.1m)j((20rad/s)k)2((0.1732)i(0.1m)j)}=(13.856)(k×i)+(8)(k×j)(400)((0.1732m)i(0.1m)j)=(13.856m/s2)j+(8m/s2)(i)+(69.32m/s2)i+(40m/s2)j=(13.856m/s2)j(8m/s2)(i)+(69.32m/s2)i+(40m/s2)j(3)

Find the acceleration of the point P to the point E

ap1=[(αAE)(rP/A)]ωAE2rP/Aap'={(αAEk)×(0.1m)j((20rad/s)k)2[(0.1m)j]}=(0.1αAE)(k×j)(400)[(0.1m)j]=(0.1αAE)(i)+(40m/s2)j=0.1αAEi+(40m/s2)j

Formulate the acceleration at the point P

ap=ap'+ap/AE+2ωBP×vp/AE

Substitute the above values

aP=0.1αAEi+(40)j+0+2[(20rad/s)k]((3.464m/s)j)=0.1αAEi+(40)j(138.56m/s2)(k×j)=0.1αAEi+(40)j(138.56)(i)=0.1αAEi+(40)j+(138.56)i(4)

Based on equations (3) and (4), we get,

(8m/s2)+(69.32m/s2)=0.1αAE+(138.56m/s2)αAE=77.2820.1αAE=772.82rad/s2

Find the weight of the rod AE is get by

WAE=mAE×gWAE=0.8kg×9.81m/s2=7.848N

Then the moment of inertial of the rod AE is

IAE=mAEIAE212IAE=0.8×(0.16m)212=1.7066×103kg.m2

Similarly, find the weight of the rod BP is

WAE=mAE×gWAE=1kg×9.81m/s2=9.81N

Then the moment of inertial of the rod BP

IBP=mBPIBP212IBP=1kg×(0.2m)212=3.333×103kg.m2

Here, the mass of the centers of rod AE and BP are to be considered as G and H.

Then the reference for point G with point A as (0,-0.08m).

Here the position vector is −(0.08m)j.

Similarly, the point H with point B as the reference as (-0.0866m,-0.05m). Position vector is −(0.0866m)i-(0.05m)j

Acceleration of the point G is

aG=αAErG/AωAE2rG/A

aG=[(772.82rad/s2)k][(0.08m)j][(20rad/s)k]2[(0.08m)j]=(61.8256m/s2)(k×j)+(32m/s2)j=(61.8256m/s2)(i)+(32m/s2)j=(61.8256m/s2)(i)+(32m/s2)j

Find the acceleration at point H

aH=αBPrH/BωBP2rH/BaH={((80rad/s2)k)[(0.0866m)i(0.05m)j][(20rad/s)k]2[(0.0866m)i(0.05m)j]}=(6.928)(k×i)+(4m/s2)(k×j)(400)((0.0866m)i)(0.05m)j=(6.928)(j)+(4)(i)(34.64)i+(20m/s2)j=(6.928)(j)(4m/s2)i(34.64m/s2)+(20m/s2)j=(30.64m/s2)i+(26.928m/s2)j

Vector Mechanics for Engineers: Dynamics, Chapter 16.2, Problem 16.142P , additional homework tip  1

Based on above figure, consider the moment about point B.

{((512)j)×P¯i+((0.3608)i(0.2083)j)×(2j)+Mk}={((0.3608)i(0.2083)j)×[(0.0621)((288.6)i+(166.64)j)+(3.5944×103)(0)]}

[0.4166P¯(j×i)+(0.7216)(i×j)+Mk]={((0.3608)i(0.2083)j)×[((17.930)i+(10.352)j)+0]}{0.4166P¯k+(0.7216)k+Mk}=3.7354k+3.735k(5) Substitute the values

{0.1(52.757)k+(0.8495)k+Mk}=0.8k0.2666k6.1252+M=1.0666M=7.19N.m

The magnitude of the couple applied on the rod is BP. It is considered as -7.19N.m and acts in a clockwise direction.

To determine

Find the force exerted on rod AE.

Expert Solution
Check Mark

Answer to Problem 16.142P

The force exerted by rod AE is F=52.757N.

Explanation of Solution

Vector Mechanics for Engineers: Dynamics, Chapter 16.2, Problem 16.142P , additional homework tip  2

Considering the above diagram of free body of the rod AE

rP/A×(P¯i)=IAEαAE+rG/A×(mAEaG)(0.1m)j×(P¯i)={(1.7066×103)((772.82)k)+((0.08m)j)×(0.8)[(61.8256)i+(32)j]}(0.1P¯)(j×i)=1.3188k+(3.9568)(j×i)(2.048)(j×j)0.1P¯k=1.3188k+3.8249(k)(2.048)(0)0.1P¯k=1.3188k3.9568k0.1P¯=1.31883.9568P¯=52.757N

The force exerted by rod AE by block P is 52.75N. It is acted upon the left direction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The double pulley shown has a weight of 35.0 lb and a centroidal radius of gyration of 5.0 in. Cylinder A (25.0 lb) and block B (16 lb) are attached to cords that wrap around pulleys in the manner shown. The coefficient of kinetic friction between block B and the surface is 0.25. Knowing that the system is released from rest at the position shown (h = 4 ft), determine the velocity of cylinder A when it strikes the ground. 6 in. A h 10 in. B
The mechanism shown is one of two identical mechanisms attached to the two sides of a 180-lb uniform rectangular door. Edge ABC of the door is guided by wheels of negligible mass that roll in horizontal and vertical tracks. A spring of constant k is attached to wheel Bin such a way that its tension is zero when 0 = 30°. Knowing that the door is released from rest in the position 0 = 45° and reaches the vertical position with an angular velocity of 0.6 rad/s, determine the spring constant k. 5 ft 5 ft The spring constant is Ib/ft.
The mechanism shown is one of two identical mechanisms attached to the two sides of a 200-lb uniform rectangular door. Edge ABC of the door is guided by wheels of negligible mass that roll in horizontal and vertical tracks. A spring with a constant k is attached to wheel B in such a way that its tension is zero when 0 = 30°, Knowing that the door is released from rest in the position 0 = 45° and reaches the vertical position with an angular velocity of 0.6 rad/s, determine the spring constant k.

Chapter 16 Solutions

Vector Mechanics for Engineers: Dynamics

Ch. 16.1 - The motion of the 2.5-kg rod AB is guided by two...Ch. 16.1 - A uniform rod BC of mass 4 kg is connected to a...Ch. 16.1 - A 2000-kg truck is being used to lift a 400-kg...Ch. 16.1 - The support bracket shown is used to transport a...Ch. 16.1 - Prob. 16.8PCh. 16.1 - A 20-kg cabinet is mounted on casters that allow...Ch. 16.1 - Prob. 16.10PCh. 16.1 - Prob. 16.11PCh. 16.1 - A 40-kg vase has a 200-mm-diameter base and is...Ch. 16.1 - Prob. 16.13PCh. 16.1 - Bars AB and BE, each with a mass of 4 kg, are...Ch. 16.1 - At the instant shown, the tensions in the vertical...Ch. 16.1 - Three bars, each of mass 3 kg, are welded together...Ch. 16.1 - Prob. 16.17PCh. 16.1 - A prototype rotating bicycle rack is designed to...Ch. 16.1 - Prob. 16.19PCh. 16.1 - The coefficients of friction between the 30-lb...Ch. 16.1 - Prob. 16.21PCh. 16.1 - Prob. 16.22PCh. 16.1 - Prob. 16.23PCh. 16.1 - For a rigid body in centroidal rotation, show that...Ch. 16.1 - Prob. 16.25PCh. 16.1 - Prob. 16.26PCh. 16.1 - The 8-in.-radius brake drum is attached to a...Ch. 16.1 - Prob. 16.28PCh. 16.1 - The 100-mm-radius brake drum is attached to a...Ch. 16.1 - The 180-mm-radius disk is at rest when it is...Ch. 16.1 - Solve Prob. 16.30, assuming that the direction of...Ch. 16.1 - In order to determine the mass moment of inertia...Ch. 16.1 - Prob. 16.33PCh. 16.1 - Each of the double pulleys shown has a mass moment...Ch. 16.1 - Each of the gears A and B has a mass of 9 kg and...Ch. 16.1 - Prob. 16.36PCh. 16.1 - Gear A weighs 1 lb and has a radius of gyration of...Ch. 16.1 - The 25-lb double pulley shown is at rest and in...Ch. 16.1 - A belt of negligible mass passes between cylinders...Ch. 16.1 - Solve Prob. 16.39 for P=2.00lb .Ch. 16.1 - Disk A has a mass of 6 kg and an initial angular...Ch. 16.1 - Prob. 16.42PCh. 16.1 - Prob. 16.43PCh. 16.1 - Disk B is at rest when it is brought into contact...Ch. 16.1 - Cylinder A has an initial angular velocity of 720...Ch. 16.1 - Prob. 16.46PCh. 16.1 - Prob. 16.47PCh. 16.1 - A uniform slender rod AB rests on a frictionless...Ch. 16.1 - (a) In Prob. 16.48, determine the point of the rod...Ch. 16.1 - A force P with a magnitude of 3 N is applied to a...Ch. 16.1 - Prob. 16.51PCh. 16.1 - A 250-lb satellite has a radius of gyration of 24...Ch. 16.1 - Prob. 16.53PCh. 16.1 - A uniform semicircular plate with a mass of 6 kg...Ch. 16.1 - Prob. 16.55PCh. 16.1 - Prob. 16.56PCh. 16.1 - The 12-lb uniform disk shown has a radius of r=3.2...Ch. 16.1 - Prob. 16.58PCh. 16.1 - Prob. 16.59PCh. 16.1 - A 15-ft beam weighing 500 Ib is lowered by mean of...Ch. 16.1 - Prob. 16.61PCh. 16.1 - Prob. 16.62PCh. 16.1 - Prob. 16.63PCh. 16.1 - A beam AB with a mass m and of uniform...Ch. 16.1 - Prob. 16.65PCh. 16.1 - Prob. 16.66PCh. 16.1 - Prob. 16.67PCh. 16.1 - Prob. 16.68PCh. 16.1 - Prob. 16.69PCh. 16.1 - Solve Prob. 16.69, assuming that the sphere is...Ch. 16.1 - A bowler projects an 8-in.-diameter ball weighing...Ch. 16.1 - Solve Prob. 16.71, assuming that the bowler...Ch. 16.1 - A uniform sphere of radius r and mass m is placed...Ch. 16.1 - A sphere of radius r and mass m has a linear...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - Prob. 16.F5PCh. 16.2 - Prob. 16.F6PCh. 16.2 - Prob. 16.F7PCh. 16.2 - Prob. 16.F8PCh. 16.2 - Show that the couple I of Fig. 16.15 can be...Ch. 16.2 - A uniform slender rod of length L=900 mm and mass...Ch. 16.2 - Prob. 16.77PCh. 16.2 - A uniform slender rod of length L=36 in. and...Ch. 16.2 - Prob. 16.79PCh. 16.2 - Prob. 16.80PCh. 16.2 - Prob. 16.81PCh. 16.2 - Prob. 16.82PCh. 16.2 - Prob. 16.83PCh. 16.2 - A uniform rod of length L and mass m is supported...Ch. 16.2 - Prob. 16.85PCh. 16.2 - Prob. 16.86PCh. 16.2 - A 1.5-kg slender rod is welded to a 5-kg uniform...Ch. 16.2 - Two identical 4-lb slender rods AB and BC are...Ch. 16.2 - Prob. 16.89PCh. 16.2 - Prob. 16.90PCh. 16.2 - Prob. 16.91PCh. 16.2 - Prob. 16.92PCh. 16.2 - Prob. 16.93PCh. 16.2 - Prob. 16.94PCh. 16.2 - A homogeneous sphere S, a uniform cylinder C, and...Ch. 16.2 - Prob. 16.96PCh. 16.2 - Prob. 16.97PCh. 16.2 - Prob. 16.98PCh. 16.2 - A drum of 60-mm radius is attached to a disk of...Ch. 16.2 - Prob. 16.100PCh. 16.2 - Prob. 16.101PCh. 16.2 - A drum of 4-in. radius is attached to a disk of...Ch. 16.2 - Prob. 16.103PCh. 16.2 - Prob. 16.104PCh. 16.2 - A drum of 4-in. radius is attached to a disk of...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - Gear C has a mass of 5 kg and a centroidal radius...Ch. 16.2 - Two uniform disks A and B, each with a mass of 2...Ch. 16.2 - Prob. 16.110PCh. 16.2 - Prob. 16.111PCh. 16.2 - Prob. 16.112PCh. 16.2 - Prob. 16.113PCh. 16.2 - A small clamp of mass mBis attached at B to a hoop...Ch. 16.2 - Prob. 16.115PCh. 16.2 - A 4-lb bar is attached to a 10-lb uniform cylinder...Ch. 16.2 - The uniform rod AB with a mass m and a length of...Ch. 16.2 - Prob. 16.118PCh. 16.2 - A 40-lb ladder rests against a wall when the...Ch. 16.2 - A beam AB of length L and mass m is supported by...Ch. 16.2 - End A of the 6-kg uniform rod AB rests on the...Ch. 16.2 - Prob. 16.122PCh. 16.2 - Prob. 16.123PCh. 16.2 - The 4-kg uniform rod ABD is attached to the crank...Ch. 16.2 - The 3-lb uniform rod BD is connected to crank AB...Ch. 16.2 - Prob. 16.126PCh. 16.2 - Prob. 16.127PCh. 16.2 - Prob. 16.128PCh. 16.2 - Prob. 16.129PCh. 16.2 - Prob. 16.130PCh. 16.2 - Prob. 16.131PCh. 16.2 - A driver starts his car with the door on the...Ch. 16.2 - Prob. 16.133PCh. 16.2 - Prob. 16.134PCh. 16.2 - Prob. 16.135PCh. 16.2 - The 6-kg rod BC connects a 10-kg disk centered at...Ch. 16.2 - In the engine system shown, l=250 mm and b=100 mm....Ch. 16.2 - Solve Prob. 16.137 when =90 .Ch. 16.2 - The 4-lb uniform slender rod AB, the 8-lb uniform...Ch. 16.2 - Prob. 16.140PCh. 16.2 - Two rotating rods in the vertical plane are...Ch. 16.2 - Prob. 16.142PCh. 16.2 - Prob. 16.143PCh. 16.2 - Prob. 16.144PCh. 16.2 - Prob. 16.145PCh. 16.2 - Prob. 16.146PCh. 16.2 - Prob. 16.147PCh. 16.2 - Prob. 16.148PCh. 16.2 - Prob. 16.149PCh. 16.2 - Prob. 16.150PCh. 16.2 - (a) Determine the magnitude and the location of...Ch. 16.2 - Draw the shear and bending-moment diagrams for the...Ch. 16 - A cyclist is riding a bicycle at a speed of 20 mph...Ch. 16 - The forklift truck shown weighs 2250 Ib and used...Ch. 16 - The total mass of the Baja car and driver,...Ch. 16 - Prob. 16.156RPCh. 16 - Prob. 16.157RPCh. 16 - Prob. 16.158RPCh. 16 - A bar of mass m=5 kg is held as shown between four...Ch. 16 - A uniform plate of mass m is suspended in each of...Ch. 16 - Prob. 16.161RPCh. 16 - Prob. 16.162RPCh. 16 - Prob. 16.163RPCh. 16 - Prob. 16.164RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Mechanical SPRING DESIGN Strategy and Restrictions in Under 15 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=dsWQrzfQt3s;License: Standard Youtube License