Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 15.7, Problem 92P

n-Octane [C8H18(l)] is burned in the constant-pressure combustor of an aircraft engine with 70 percent excess air. Air enters this combustor at 600 kPa and 327°C, liquid fuel is injected at 25°C, and the products of combustion leave at 600 kPa and 1227°C. Determine the entropy generation and exergy destruction per unit mass of fuel during this combustion process. Take T0 = 25°C.

(a)

Expert Solution
Check Mark
To determine

The entropy generation from the combustion chamber per unit mass of fuel.

Answer to Problem 92P

The entropy generation from the combustion chamber per unit mass of fuel is 84.7kJ/kgK_.

Explanation of Solution

Write the energy balance equation using steady-flow equation.

EinEout=ΔEsystem (I)

Here, the total energy entering the system is Ein, the total energy leaving the system is Eout, and the change in the total energy of the system is ΔEsystem.

Substitute 0 for Ein, Qout for Eout, and ΔU for ΔEsystem in Equation (I)

(0)Qout=ΔUQout=NP(h¯f°+h¯h¯°)PNR(h¯f°+h¯h¯°)RQout=NP(h¯f°+h¯1500Kh¯298K°)PNR(h¯f°+h¯600Kh¯298K°)R (II)

Here, the enthalpy of formation for product is h¯f,P°, the enthalpy of formation for reactant is h¯f,R°, the mole number of the product is NP, and the mole number of the reactant is NR.

Calculate the molar mass of the C8H18.

MC8H18=[(NC)(MC)+(NH)(MH)] (III)

Here, the number of carbon atoms is NC, the molar mass of the carbon is MC, the number of hydrogen atoms is NH, the molar mass of the hydrogen is MH.

Write the expression for entropy generation during this process.

Sgen=SPSR+QoutTsurr (IV)

Write the combustion equation of Equation (IV)

Sgen=SPSR+QoutTsurrSgen=NPs¯PNRs¯R+QoutTsurr (V)

Here, the entropy of the product is s¯P, the entropy of the reactant is s¯R, the heat transfer for C8H18 is Qout, and the surrounding temperature is Tsurr.

Determine the entropy at the partial pressure of the components.

Si=Nis¯i(T,Pi)=Nis¯i°(T,P0)Ruln(yiPm) (VI).

Here, the partial pressure is Pi, the mole fraction of the component is yi, the total pressure of the mixture is Pm, and the universal gas constant is Ru.

Write the expression for exergy destruction during this process.

Xdestroyed=T0Sgen (VII)

Here, the thermodynamic temperature of the surrounding is T0

Determine the entropy generation per unit mass of the fuel.

Sgen=S¯genMC8H18S¯gen=Sgen×MC8H18 (VIII)

Conclusion:

Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.

For air temperature enter in the combustion chamber,

Tenter=327°C=(327+273)K=600K

For then liquid injected temperature in the combustion chamber,

Tinjected=25°C=(25+273)K=298K

For air temperature exit in the combustion chamber,

Texit=1227°C=(1227+273)K=1500K

Write the combustion equation of 1 kmol for C8H18.

{C8H18(l)+1.7ath(O2+3.76N2)}{8CO2+9H2O+0.7athO2+(1.7)(3.76)athN2} (IX)

Here, liquid octane is C8H18, stoichiometric coefficient of air is ath, oxygen is O2, nitrogen is N2, carbon dioxide is CO2 and water is H2O.

Express the stoichiometric coefficient of air by O2 balancing.

1.7ath=8+4.5+0.7athath=12.5

Substitute 12.5 for ath in Equation (IX).

{C8H18(l)+(21.25)(O2+3.76N2)}{8CO2+9H2O+8.75O2+(79.9)N2} (X).

Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K, 600 K, and 1500 K for C8H18, O2, N2, Co, H2O(g), and CO2 is given in a table (I) as:

Substanceh¯f°kJ/kmolh¯298KkJ/kmolh¯600KkJ/kmolh¯1500KkJ/kmol
C2H4(g)-249,950---------
O20868217,92949,292
N20866917,56347,073
H2O(g)-241,8209904---57,999
CO2-393,5209364---71,078

Refer Equation (X), and write the number of moles of reactants.

NR,C8H18=1kmolNR,O2=21.25kmolNR,N2=79.9kmol

Here, number of moles of reactant octane, oxygen and nitrogen is NR,C8H18,NR,O2andNR,N2 respectively.

Refer Equation (X), and write the number of moles of products.

NP,CO2=8kmolNP,H2O=9kmolNP,O2=8.75kmolNP,N2=79.9kmol

Here, number of moles of product carbon dioxide, water, oxygen and nitrogen is NP,CO2,NP,O2,NP,H2OandNP,N2 respectively.

Substitute the value of substance in Equation (II).

Qout=[(8)(393,520kJ/kmolK+71,078kJ/kmolK9364kJ/kmolK)+(9)(241,820kJ/kmolK+57,999kJ/kmolK9904kJ/kmolK)+(8.75)(0+49,292kJ/kmolK8682kJ/kmolK)+(79.9)(0+47,073kJ/kmolK+8669kJ/kmolK)+(1)(249,950kJ/kmolK)(21.25)(0+17,929kJ/kmolK8682kJ/kmolK)(79.9)(0+17,563kJ/kmolK8669kJ/kmolK)]=1,631,335kJ/kmolK

Therefore the heat transfer for C8H18 is 1,631,335kJ/kmolK.

Substitute 8 for NC, 12kg/kmol for MC, 18 for NH, 1kg/kmol for MH in Equation (III).

MC8H18=[(8)(12)+(18)(1)]kg/kmol=[(96)+(18)]kg/kmol=114kg/kmol

Refer Equation (VI) for reactant and product to calculation the entropy in tabular form as:

For reactant entropy,

SubstanceNiyi

s¯i°

(T, 1 atm)

Ruln(yiPm)Nis¯i
C8H181---466.7314.79451.94
O221.250.21226.351.814771.48
N279.90.79212.0712.8315,919.28
SR=21,142.70kJ/K

For product entropy,

SubstanceNiyi

s¯i°

(T, 1 atm)

Ruln(yiPm)Nis¯i
CO280.0757292.11-6.6732390.26
H2O(g)90.0852250.45-5.6902305.26
O28.750.082825.97-5.9282309.11
N279.90.7563241.7712.4618,321.87
SP=25,326.50kJ/K

Substitute 25,326.50kJ/K for SP, 21,142.70kJ/K for SR, 25°C for Tsurr, and 1,631,335kJ/kmolK for Qout in Equation (IV).

Sgen=(25,326.5021,142.70)kJ/K+1,631,335kJ/kmolK25°C=(4183.8kJ/K)+1,631,335kJ/kmolK25°C+273=9658.1kJ/kmolK

Substitute 25°C for T0 and 9658.1kJ/kmolK for Sgen in Equation (VII).

Xdest=(25°C)(9658.1kJ/kmolK)=(25°C+273)(9658.1kJ/kmolK)=2,878,108kJ/kmolK

Substitute 114kJ/kmolK for MC8H18 and 9658.1kJ/kmolK for Sgen in Equation (VIII).

S¯gen=(9658.1kJ/kmolK)(114kg/kmol)=84.7kJ/kgK

Thus, the entropy generation from the combustion chamber per unit mass of fuel is 84.7kJ/kgK_.

(b)

Expert Solution
Check Mark
To determine

The exergy destruction from the combustion chamber per unit mass of fuel.

Answer to Problem 92P

The exergy destruction from the combustion chamber per unit mass of fuel is 25,247kJ/kg_.

Explanation of Solution

Determine the exergy destruction from the combustion chamber per unit mass of the fuel.

Xdestory=X¯destroryMC8H18X¯destrory=Xdestrory×MC8H18 . (XI)

Conclusion:

Substitute 114kJ/kmolK for MC8H18 and 2,878,108kJ/kmolK for Xdest in Equation (XI).

X¯dest=(2,878,108kJ/kmolK)(114kg/kmol)=25,247kJ/kgK

Thus, the exergy destruction from the combustion chamber per unit mass of fuel is 390,800kJ_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2. Determine the safety factors for the bracket rod shown in Figure 2 based on both the distortion-energy theory and the maximum shear theory and compare them. Given: The material is 2024-T4 aluminum with a yield strength of 47 000 psi. The rod length /= 6 in. and arm a = 8 in. The rod outside diameter od 1.5 in., id = 1 in, h=2 in., t=0.5 in., Load F= 1000 lb. Assumptions: The load is static and the assembly is at room temperature. Consider shear due to transverse loading as well as other stresses. (Note: solve in SI units) wall tube Figure 2 arm
The question has been set up with all the cuts needed to accurately derive expressions for V(x) and M(x). Using the cuts free body diagrams set up below, derive expressions for V(x) and M(x). If you use the method of cuts then validate your answers using calculus or vice versa.
It is required to treat 130 kmol/hr of chloroform-air feed gas mixture that contains 12% chloroform. It is required to remove 93% of chloroform using 150 kmol/hr of solvent that contains 99.6% water and 0.4% chloroform. The cross sectional area of the column is 0.8 m². Calculate the column height using the following data; kx'.a = 1.35 (kmol/m³.s (Ax)), and ky'.a = 0.06 (kmol/m³.s (Ay)), kx/ky = 1.35, and the equilibrium data are: X 0 0.0133 0.033 y 0 0.01 0.0266 0.049 0.064 0.0747 0.0933 0.1053 0.0433 0.06 0.0733 0.111 0.1 0.12 0.14

Chapter 15 Solutions

Thermodynamics: An Engineering Approach

Ch. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 16PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 18PCh. 15.7 - Propane (C3H8) is burned with 75 percent excess...Ch. 15.7 - Propane fuel (C3H8) is burned with 30 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 22PCh. 15.7 - Prob. 23PCh. 15.7 - Ethane (C2H6) is burned with 20 percent excess air...Ch. 15.7 - Octane (C8H18) is burned with 250 percent...Ch. 15.7 - Prob. 26PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - Prob. 28PCh. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 30PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 33PCh. 15.7 - The fuel mixer in a natural gas burner mixes...Ch. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Determine the fuelair ratio when coal from...Ch. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - When are the enthalpy of formation and the...Ch. 15.7 - Prob. 43PCh. 15.7 - Prob. 44PCh. 15.7 - Prob. 45PCh. 15.7 - Prob. 46PCh. 15.7 - Prob. 48PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 53PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 56PCh. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - Prob. 60PCh. 15.7 - Prob. 61PCh. 15.7 - Prob. 62PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 66PCh. 15.7 - A gaseous fuel mixture that is 40 percent propane...Ch. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 70PCh. 15.7 - Prob. 71PCh. 15.7 - Prob. 72PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 74PCh. 15.7 - Prob. 75PCh. 15.7 - What is the adiabatic flame temperature of methane...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Ethyl alcohol [C2H5OH(g)] is burned with 200...Ch. 15.7 - Prob. 81PCh. 15.7 - Prob. 82PCh. 15.7 - Reconsider Prob. 1582. The combustion products are...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 85PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 88PCh. 15.7 - Reconsider Prob. 1588. The automobile engine is to...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 91PCh. 15.7 - n-Octane [C8H18(l)] is burned in the...Ch. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - n-Butane (C4H10) is burned with the stoichiometric...Ch. 15.7 - A gaseous fuel mixture of 60 percent propane...Ch. 15.7 - Calculate the higher and lower heating values of...Ch. 15.7 - Prob. 103RPCh. 15.7 - Methane gas (CH4) at 25C is burned steadily with...Ch. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Liquid propane [C3H8(l)] enters a combustion...Ch. 15.7 - Prob. 109RPCh. 15.7 - Prob. 110RPCh. 15.7 - Prob. 111RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 115RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - Prob. 117RPCh. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 126FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license