Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 56PQ
(a)
To determine
The comparison of the airspeed in region L with the airspeed in region R for each case.
(b)
To determine
The comparison of the air pressure in region L with the air pressure in region R for each case.
(c)
To determine
The motion of the ball in each case.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The highest building in Montreal is the '1 square building, with a height of 203m.
The atmospheric pressure in the streets of Montreal is P1 = 9.9 x 104 Pa.
Suppose air density is constant : Pair = 1,2 kg/m³ and g = 9.8 m/s?.
a. Find the pressure difference between the streets and the rooftop of the '1 square building'
b. Find the pressure on the rooftop.
Suppose the rooftop temperature to be T = 298K, and the air composition is 100% N2 molecules.
*c. Find the root-mean-square speed (Vms ).
*d. How would you find the probability for a molecule picked randomly to have a speed in the range vrms and
Vrms+5.0 m/s. (No calculations needed)
*e. Find the ratio between the most probable speed (vmp) and the mean speed (vmean).
The collision cross-section of N2 molecules is 0.43 nm?.
*f. Find the collision frequency. Is it in the order of magnitude that you were expecting?
Now, consider Earth's atmosphere as 80% N2 and 20% 02. (No calculations needed)
*g. Explain if larger, smaller, or equal to…
a and d
What is the gas pressure inside the box as shown?
Chapter 15 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 15.1 - Imagine an airplane flying at constant velocity....Ch. 15.3 - Prob. 15.2CECh. 15.3 - Prob. 15.3CECh. 15.3 - Prob. 15.4CECh. 15.4 - Prob. 15.5CECh. 15.4 - Prob. 15.6CECh. 15 - Prob. 1PQCh. 15 - Prob. 2PQCh. 15 - Dry air is primarily composed of nitrogen. In a...Ch. 15 - Why is the Earths atmosphere denser near sea level...
Ch. 15 - Crater Lake in Oregon is the deepest lake in the...Ch. 15 - Prob. 6PQCh. 15 - Prob. 7PQCh. 15 - One study found that the dives of emperor penguins...Ch. 15 - Prob. 9PQCh. 15 - Prob. 10PQCh. 15 - Suppose you are at the top of Mount Everest and...Ch. 15 - Prob. 12PQCh. 15 - Prob. 13PQCh. 15 - Prob. 14PQCh. 15 - A 20.0-kg child sits on a four-legged stool. The...Ch. 15 - Prob. 16PQCh. 15 - The dolphin tank at an amusement park is...Ch. 15 - Prob. 18PQCh. 15 - A block of an unknown material floats in water...Ch. 15 - Prob. 20PQCh. 15 - Prob. 21PQCh. 15 - A spherical submersible 2.00 m in radius, armed...Ch. 15 - What fraction of an iceberg floating in the ocean...Ch. 15 - Prob. 24PQCh. 15 - A hollow copper (Cu = 8.92 103 kg/m3) spherical...Ch. 15 - Prob. 26PQCh. 15 - You have probably noticed that carrying a person...Ch. 15 - A straw is in a glass of juice. Peter puts his...Ch. 15 - Prob. 29PQCh. 15 - Prob. 30PQCh. 15 - Prob. 31PQCh. 15 - Prob. 32PQCh. 15 - A rectangular block of Styrofoam 25.0 cm in...Ch. 15 - Prob. 34PQCh. 15 - Prob. 35PQCh. 15 - A manometer is shown in Figure P15.36. Rank the...Ch. 15 - The gauge pressure measured on a cars tire is 35...Ch. 15 - Prob. 38PQCh. 15 - Prob. 39PQCh. 15 - To allow a car to slow down or stop, hydraulic...Ch. 15 - Prob. 41PQCh. 15 - Prob. 42PQCh. 15 - Prob. 43PQCh. 15 - Water enters a smooth, horizontal tube with a...Ch. 15 - Prob. 45PQCh. 15 - Prob. 46PQCh. 15 - Prob. 47PQCh. 15 - A fluid flows through a horizontal pipe that...Ch. 15 - Water is flowing through a pipe that has a...Ch. 15 - Prob. 50PQCh. 15 - Prob. 51PQCh. 15 - Figure P15.52 shows a Venturi meter, which may be...Ch. 15 - At a fraternity party, drinking straws have been...Ch. 15 - Liquid toxic waste with a density of 1752 kg/m3 is...Ch. 15 - Water is flowing in the pipe shown in Figure...Ch. 15 - Prob. 56PQCh. 15 - Water flows through a pipe that gradually descends...Ch. 15 - Air flows horizontally with a speed of 108 km/h...Ch. 15 - Prob. 59PQCh. 15 - Prob. 60PQCh. 15 - Prob. 61PQCh. 15 - Prob. 62PQCh. 15 - Prob. 63PQCh. 15 - Prob. 64PQCh. 15 - Prob. 65PQCh. 15 - Prob. 66PQCh. 15 - Prob. 67PQCh. 15 - Prob. 68PQCh. 15 - Prob. 69PQCh. 15 - Prob. 70PQCh. 15 - The density of air in the Earths atmosphere...Ch. 15 - A manometer containing water with one end...Ch. 15 - Prob. 73PQCh. 15 - Prob. 74PQCh. 15 - Prob. 75PQCh. 15 - Prob. 76PQCh. 15 - Prob. 77PQCh. 15 - Case Study Shannon uses the example of a helium...Ch. 15 - Prob. 79PQCh. 15 - Prob. 80PQCh. 15 - A uniform wooden board of length L and mass M is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A manometer containing water with one end connected to a container of gas has a column height difference of 0.60 m (Fig. P15.72). If the atmospheric pressure on the right column is 1.01 105 Pa, find the absolute pressure of the gas in the container. The density of water is 1.0 103 kg/m3. FIGURE P15.72arrow_forwardWhy is the Earths atmosphere denser near sea level than it is at a high altitude? Be sure to explain why the atmospheres density is not uniform and why the air isnt all in contact with the Earths surface.arrow_forwardSuppose you are at the top of Mount Everest and you fill a water balloon. The air pressure at the top of Mount Everest is 58 kPa. a. What is the fractional change in the balloons volume V/Vi when you take it to sea level? b. If instead you take it 100 m below the surface of the ocean, what is the fractional change in its volume?arrow_forward
- (a) Find the average time required for an oxygen molecule to diffuse through a 0.200-mm-thick tear layer on the cornea. (b) How much time is required to diffuse 0.500 cm3 of oxygen to the cornea if its surface area is 1.00 cm2?arrow_forwardReview. (a) Derive an expression for the buoyant force on a spherical balloon, submerged in water, as a function of the depth h below the surface, the volume Vi of the balloon at the surface, the pressure P0 at the surface, and the density w of the water. Assume the water temperature does not change with depth, (b) Does the bouyant force increase or decrease as the balloon is submerged? (c) At what depth is the buoyant force one-half the surface value?arrow_forwardThe density of air is 1.29 kg / m. Find the density in g/cm³. O a. 0.00129 g/cm3 O b. 1.29 g/cm3 O C. 0.129 g/ cm³ O d. 0.0129 g/cm2arrow_forward
- A boundary layer develops along the walls of a rectangular wind tunnel. The air is at 20°C and atmospheric pressure. The boundary layer starts upstream of the contraction and grows into the test section. By the time it reaches the test section, the boundary layer is fully turbulent. The boundary layer profile and its thickness are measured at both the beginning (x = x1) and the end (x = x2) of the bottom wall of the wind tunnel test section. The test section is 1.8 m long and 0.50 m wide (into the page in Fig). The following measurements are made: ?1 = 4.2 cm ?2 = 7.7 cm V = 10.0 m/s At both locations the boundary layer profile fits better to a one-eighth-power law approximation than to the standard one-seventh-power law approximation, u/U ≅(y/?)1/8 for y ≤ ? u/U ≅ 1 for y…arrow_forward1. A skydiver of mass 75 kg is falling freely, while experiencing a drag force due to air resistance. If her drag coefficient is 1.2, and her frontal area is 1 m2 , and assuming standard atmospheric conditions, find her terminal velocity at 10°C. 2. Find the terminal velocity of a parachutist, assuming that the parachute can be modeled as a semicircular cup of diameter 6 m. Use standard atmosphere properties of air corresponding to an altitude of 3000 m. The total mass of the person and parachute is 90 kg.arrow_forward1. The pressure gauge shown in Figure 1 consists of a spring inside vacuum chamber. The chamber is isolated from the a environment by a piston, which is free to move up or down. Ambient pressure exerts a force on the piston, which compresses the spring. The piston has a diameter of 30 mm. At sea level, where ambient pressure is 1 atm, the spring is compressed by distance xo = 14 mm relative to its relaxed length. Suppose the pressure gauge is lowered into water at a lake. At depth D, the spring is compressed by distance x, = 34 mm relative to its relaxed length. Calculate D. Show and explain your work. Vacuum Figure 1arrow_forward
- Snorkels are U-shaped tubes that allow swimmers to breath while swimming just below the surface of the water (1,028 kg/m). An average human can reduce the air pressure in their lungs by 2.53 KPa, when they extend their diaphram and expand their rib cage. Answer tolerance of ±5 on the third signficant digit. a) Calculate the maximum depth a snorkeler can swim under water, while breathing through the snorkel. Number Units The U-shaped manometer shown below has one end open to the atmosphere and the other end attached to a canister of pressurized gas. Saltwater is the liquid (p = 1,025 kg/m) in the manometer which extends a height 8.21 cm above point (3). Answer tolerance of ±5 on the third signficant digit. a) Calculate the absolute pressure of the gas in the canister. Number Units (1) ha hi (2) (3)arrow_forwardA turbocharged aircraft engine cylinder has a total volume of 80 cu. in. and a clearance volume of 15 cu. in. The pressure in the cylinder when the piston is at TDC (Top Dead Centre) is 130 PSIA (130 pounds per square inch absolute). What is the absolute pressure in the intake manifold? What is the compression ratio?arrow_forwardFor the next two items: A playroom has dimensions 3700 mm x 4300 mm x 2500 mm. How much does the air weigh in the room if the air pressure is 1.0 atm? O 402 N 472 N O 390 N 48 Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College