Concept explainers
(a)
The free-body diagram of the forces acting on the ladder.
(a)
Answer to Problem 82PQ
The free-body diagram of the forces acting on the ladder is
Explanation of Solution
A free-body diagram is a graphical tool used to illustrate the different forces acting on a particular object. It helps to solve complex physical problems. The free-body diagram of the ladder in the given situation is drawn in figure 1.
The forces acting on the ladder are the weight, the normal force, the tension and the force of static friction. In the figure weight is represented as
Conclusion:
Thus, the free-body diagram of the forces acting on the ladder is drawn in figure 1.
(b)
The tension in the rope in terms of
(b)
Answer to Problem 82PQ
The tension in the rope in terms of
Explanation of Solution
Take the lower end of the ladder as the pivot point. This will eliminate the torque due to normal force and the torque due to force of static friction.
Since the ladder is in rotational equilibrium, the net torque about the lower end of the ladder must be zero.
Write the condition for the rotational equilibrium.
Here,
Write the equation for
Here,
Put the above equation in equation (I).
Write the expression for
Write the expression for
Write the expression for
Here,
Write the expression for
Here,
Put the above four equations in equation (II) and rewrite it for
Conclusion:
Therefore, the tension in the rope in terms of
(c)
The expression for the tension in the rope in terms of
(c)
Answer to Problem 82PQ
The expression for the tension in the rope in terms of
Explanation of Solution
Since the ladder is in translational equilibrium, the net force in
Write the conditions for the translational equilibrium.
Here,
Here,
Write the equation for
Here,
Write the equation for
Here,
Put the above equation in equation (VI).
Put the above equation in equation (IV) and rewrite it for
Write the equation for
Here,
Write the equation for
Put the above equation in equation (VIII).
Put the above equation in equation (V) and rewrite it for
Put the above equation in equation (VII).
Conclusion:
Therefore, the expression for the tension in the rope in terms of
(d)
The coefficient of static friction in terms of the angle
(d)
Answer to Problem 82PQ
The coefficient of static friction in terms of the angle
Explanation of Solution
Equate equations (III) and (IX).
Conclusion:
Therefore, the coefficient of static friction in terms of the angle
(e)
The after effect of moving the ladder slightly so as to reduce the angle
(e)
Answer to Problem 82PQ
The ladder will slip if it is moved slightly to reduce the angle
Explanation of Solution
The expression for the angle
The expression for the tension force obtained in part (b),
Conclusion:
Thus, the ladder will slip if it is moved slightly to reduce the angle
Want to see more full solutions like this?
Chapter 14 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- A 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forwardA square plate with sides of length 4.0 m can rotate about an axle passing through its center of mass and perpendicular to the plate as shown in Figure P14.36. There are four forces acting on the plate at different points. The rotational inertia of the plate is 24 kgm2. Is the plate in equilibrium? FIGURE P14.36arrow_forwardConsider a nanotube with a Youngs modulus of 2.130 1012 N/m2 that experiences a tensile stress of 5.3 1010 N/m2. Steel has a Youngs modulus of about 2.000 1011 Pa. How much stress would cause a piece of steel to experience the same strain as the nanotube?arrow_forward
- Why is the following situation impossible? A uniform beam of mass mk = 3.00 kg and length = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in Figure P12.2. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. Figure P12.2arrow_forwardA massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forwardA stepladder of negligible weight is constructed as shown in Figure P12.40, with AC = BC = . A painter of mass m stands on the ladder a distance d from the bottom. Assuming the floor is frictionless, find (a) the tension in the horizontal bar DE connecting the two halves of the ladder, (b) the normal forces at A and B, and (c) the components of the reaction force at the single hinge C that the left half of the ladder exerts on the right half. Suggestion: Treat the ladder as a single object, but also treat each half of the ladder separately. Figure P12.40 Problems 40 and 41.arrow_forward
- Ruby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forwardA square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forwardA uniform beam of length L and mass m shown in Figure P12.8 is inclined at an angle to the horizontal. Its upper end is connected to a wall by a rope, and its lower end rests on a rough, horizontal surface. The coefficient of static friction between the beam and surface is s. Assume the angle is such that the static friction force is at its maximum value. (a) Draw a force diagram for the beam. (b) Using the condition of rotational equilibrium, find an expression for the tension T in the rope in terms of m, g, and . (c) Using the condition of translational equilibrium, find a second expression for T in terms of s, m, and g. (d) Using the results from parts (a) through (c), obtain an expression for s involving only the angle . (e) What happens if the ladder is lifted upward and its base is placed back on the ground slightly to the left of its position in Figure P12.8? Explain. Figure P12.8arrow_forward
- A disk with a radius of 4.5 m has a 100-N force applied to its outer edge at two different angles (Fig. P12.55). The disk has arotational inertia of 165 kg m2. a. What is the magnitude of the torque applied to the disk incase 1? b. What is the magnitude of the torque applied to the disk incase 2? c. Assuming the force on the disk is constant in each case,what is the magnitude of the angular acceleration applied tothe disk in each case? d. Which case is a more effective way of spinning the disk?Describe which quantity you are using to determine effectiveness and why you chose that quantity. FIGURE P12.55arrow_forward(a) When opening a door, you push on it perpendicularly with a force of 55.0 N at a distance of 0.850 m from the hinges. What torque are you exerting relative to the hinges? (b) Does it matter if you push at the same height as the hinges? There is only one pair of hinges.arrow_forwardAt a museum, a 1300-kg model aircraft is hung from a lightweight beam of length 12.0 m that is free to pivot about its base and is supported by a massless cable (Fig. P14.38). Ignore the mass of the beam. a. What is the tension in the section of the cable between the beam and the wall? b. What are the horizontal and vertical forces that the pivot exerts on the beam? FIGURE P14.38 (a) From the free-body diagram, the angle that the string tension makes with the beam is = 55.0 + 18.0 = 73.0, and the perpendicular component of the string tension is FT sin73.0. Summing torques around the base of the rod gives (Eq. 14.2): =0:(12.0m)(1300kg)(9.81m/s2)cos55.0+FT(12.0m)sin73.0=0FT=(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0FT=7.65103N Figure P14.38ANS (b) Using force balance (Eq. 14.1): Fx=0:FHFTcos18.0=0FH=FTcos18.0=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]cos18.0=7.27103NFy=0:FVFTsin18.0(1300kg)(9.81m/s2)=0 FV=FTsin18.0+(1300kg)gFV=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]sin18.0+(1300kg)(9.81m/s2)FV=1.51104Narrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning