Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 5PQ
Consider the sketch of a portion of a roller-coaster track seen in Figure P14.5. Identify places on the track that could be considered possible locations of static equilibrium for a rollercoaster car were the car to be placed at any spot on the track. Which places are candidate locations for stable, unstable, and neutral static equilibrium?
FIGURE P14.5
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
We can model a pine tree in the forest as having a compact canopy at the top of a relatively bare trunk. Wind blowing on the top of the tree exerts a horizontal force, and thus a torque that can topple the tree if there is no opposing torque. Suppose a tree's canopy presents an area of 9.0 m2m2 to the wind centered at a height of 7.0 mm above the ground. (These are reasonable values for forest trees.
*Part A
If the wind blows at 6.5 m/sm/s, what is the magnitude of the drag force of the wind on the canopy? Assume a drag coefficient of 0.50 and the density of air of 1.2 kg/m3kg/m3.
Express your answer with the appropriate units.
*Part B
What torque does this force exert on the tree, measured about the point where the trunk meets the ground?
Express your answer with the appropriate units.
a. Two strips of metal are pinned together as shown, with a rod of 10mm
diameter. The Ultimate shear stress for the rod is 60MPa. Determine the
maximum force required to break the pin.
EV (6)
b)
Two students are watching an action film in which a car drives down a ramp onto the back of a
moving lorry. Both are moving at high speed, the car slightly faster than the lory.
One student complains that this is impossible because the car would not be able to stop before
hitting the cab of the lorry.
The car has mass 1250 kg and is moving at a speed of 28.0 ms. The lorry has mass 3500 kg
and a speed of 25.5 ms. The length of the flat back of the lorry allows a braking distance of
5.0 m.
By considering both momentum and energy show that the stunt is possible, provided a
minimum force of about 600 N slows the car down. You should support your explanations with
calculations.
Treat the situation as one in which two objects join together.
CR (8)
7
c.Explain Newtons Second Law of motion in terms of…
B9
Chapter 14 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 14.1 - A rubber duck floats in a bathtub. Imagine moving...Ch. 14.1 - Prob. 14.2CECh. 14.2 - CASE STUDY Hanging a Plane from a Single Point In...Ch. 14.2 - Prob. 14.4CECh. 14.4 - Imagine two vertical rods initially of equal...Ch. 14 - What Is Static Equilibrium? Problems 13 are...Ch. 14 - Prob. 2PQCh. 14 - Two identical balls are attached to a...Ch. 14 - While working on homework together, your friend...Ch. 14 - Consider the sketch of a portion of a...
Ch. 14 - Prob. 6PQCh. 14 - Prob. 7PQCh. 14 - Prob. 8PQCh. 14 - The keystone of an arch is the stone at the top...Ch. 14 - Prob. 10PQCh. 14 - Stand straight and comfortably with your feet...Ch. 14 - Prob. 12PQCh. 14 - Prob. 13PQCh. 14 - Prob. 14PQCh. 14 - Prob. 15PQCh. 14 - Prob. 16PQCh. 14 - Prob. 17PQCh. 14 - Prob. 18PQCh. 14 - Prob. 19PQCh. 14 - Prob. 20PQCh. 14 - Prob. 21PQCh. 14 - The inner planets of our solar system are...Ch. 14 - Two Boy Scouts, Bobby and Jimmy, are carrying a...Ch. 14 - Prob. 24PQCh. 14 - A painter of mass 87.8 kg is 1.45 m from the top...Ch. 14 - Consider the situation in Problem 25. Tests have...Ch. 14 - Children playing pirates have suspended a uniform...Ch. 14 - Prob. 28PQCh. 14 - Prob. 29PQCh. 14 - A 5.45-N beam of uniform density is 1.60 m long....Ch. 14 - A wooden door 2.1 m high and 0.90 m wide is hung...Ch. 14 - A 215-kg robotic arm at an assembly plant is...Ch. 14 - Problems 33 and 34 are paired. One end of a...Ch. 14 - For the uniform beam in Problem 33, find the...Ch. 14 - Prob. 35PQCh. 14 - A square plate with sides of length 4.0 m can...Ch. 14 - Prob. 37PQCh. 14 - At a museum, a 1300-kg model aircraft is hung from...Ch. 14 - A uniform wire (Y = 2.0 1011 N/m2) is subjected...Ch. 14 - A brass wire and a steel wire, both of the same...Ch. 14 - In Example 14.3, we found that one of the steel...Ch. 14 - A carbon nanotube is a nanometer-scale cylindrical...Ch. 14 - A nanotube with a Youngs modulus of 1.000 1012 Pa...Ch. 14 - Consider a nanotube with a Youngs modulus of 2.130...Ch. 14 - Prob. 45PQCh. 14 - Use the graph in Figure P14.46 to list the three...Ch. 14 - Prob. 47PQCh. 14 - A company is testing a new material made of...Ch. 14 - Prob. 49PQCh. 14 - Prob. 50PQCh. 14 - Prob. 51PQCh. 14 - Prob. 52PQCh. 14 - Prob. 53PQCh. 14 - Prob. 54PQCh. 14 - Prob. 55PQCh. 14 - Prob. 56PQCh. 14 - A copper rod with length 1.4 m and cross-sectional...Ch. 14 - Prob. 58PQCh. 14 - Prob. 59PQCh. 14 - Bruce Lee was famous for breaking concrete blocks...Ch. 14 - Prob. 61PQCh. 14 - Prob. 62PQCh. 14 - Prob. 63PQCh. 14 - A One end of a metal rod of weight Fg and length L...Ch. 14 - Prob. 65PQCh. 14 - A steel cable 2.00 m in length and with...Ch. 14 - Prob. 67PQCh. 14 - Prob. 68PQCh. 14 - Prob. 69PQCh. 14 - Prob. 70PQCh. 14 - Prob. 71PQCh. 14 - Prob. 72PQCh. 14 - Prob. 73PQCh. 14 - We know from studying friction forces that static...Ch. 14 - Ruby, with mass 55.0 kg, is trying to reach a box...Ch. 14 - An object is being weighed using an unequal-arm...Ch. 14 - Prob. 77PQCh. 14 - A massless, horizontal beam of length L and a...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A horizontal, rigid bar of negligible weight is...Ch. 14 - Prob. 82PQCh. 14 - Prob. 83PQCh. 14 - Prob. 84PQCh. 14 - Prob. 85PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A tow truck is pulling a car out of a ditch by means of a steel cable that is 9.2 m long and has a radius of 0.50 cm. When the car just begins to move, the tension in the cable is 279.6 N. How much has the cable stretched from its initial length? Assume Ysteel is 2x1011 N/m2arrow_forwardThe location of the box's center of gravity is indicated by point G. The location of the box's center of gravity is indicated by point G. Which has the possibility of tipping? Which has the possibility of no tipping? A B A B D O B and D O A and B O Aand D O Cand D O B and C O B and C O Cand D O A and C O A and C O B and D O A and B O Aand Darrow_forwardPat builds a track for his model car out of wood. The track is 14.00 cm wide, 3.00 m long, and 1.00 m high, and is solid. The runway is cut such that it forms a parabola by the equation y=((x-3)^2)/9. Locate the horizontal coordinate of the center of gravity of this trackarrow_forward
- 5arrow_forwardA rod of length 4.00 m with negligible mass is hinged to a wall. A rope attached to the end of the rod runs up to the wall at an angle of exactly 45, helping support the rod, while a sign of weight 10.0 N is hanging by two ropes attached to the bottom of the rod. The ropes make an angle of exactly 30 with the rod as shown in Figure P14.79. Another sign with a weight of 10.0 N is attached to the top of the rod with its center of mass at the midpoint of the rod. The entire system is in equilibrium. Find the magnitude of the tension in the rope above the rod that is also attached to the wall. FIGURE P14.79 Problems 79 and 80.arrow_forwardA 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forward
- When a circus performer performing on the rings executes the iron cross, he maintains the position at rest shown in Figure P12.37a. In this maneuver, the gymnasts feet (not shown) are off the floor. The primary muscles involved in supporting this position are the latissimus dorsi (lats) and the pectoralis major (pecs). One of the rings exerts an upward force Fk on a hand as show n in Figure P12.37b. The force Fs, is exerted by the shoulder joint on the arm. The latissimus dorsi and pectoralis major muscles exert a total force Fm on the arm. (a) Using the information in the figure, find the magnitude of the force Fm for an athlete of weight 750 N. (b) Suppose a performer in training cannot perform the iron cross but can hold a position similar to the figure in which the arms make a 45 angle with the horizontal rather than being horizontal. Why is this position easier for the performer? Figure P12.37arrow_forwardTwo racquetballs, each having a mass of 170 g, are placed in a glass jar as shown in Figure P12.43. Their centers lie on a straight line that makes a 45 angle with the horizontal. (a) Assume the walls are frictionless and determine P1, P2, and P3. (b) Determine the magnitude of the force exerted by the left ball on the right ball. Figure P12.43arrow_forwardA plank with a mass M = 6.00 kg rests on top of two identical, solid, cylindrical rollers that have R = 5.00 cm and m = 2.00 kg (Fig. P10.87). The plank is pulled by a constant horizontal force F of magnitude 6.00 N applied to the end of the plank and perpendicular to the axes of the cylinders (which are parallel). The cylinders roll without slipping on a Hat surface. There is also no slipping between the cylinders and the plank. (a) Find the initial acceleration of the plank at the moment the rollers are equidistant from the ends of the plank. (b) Find the acceleration of the rollers at this moment. (c) What friction forces are acting at this moment?arrow_forward
- A uniform beam of length L and mass m shown in Figure P12.8 is inclined at an angle to the horizontal. Its upper end is connected to a wall by a rope, and its lower end rests on a rough, horizontal surface. The coefficient of static friction between the beam and surface is s. Assume the angle is such that the static friction force is at its maximum value. (a) Draw a force diagram for the beam. (b) Using the condition of rotational equilibrium, find an expression for the tension T in the rope in terms of m, g, and . (c) Using the condition of translational equilibrium, find a second expression for T in terms of s, m, and g. (d) Using the results from parts (a) through (c), obtain an expression for s involving only the angle . (e) What happens if the ladder is lifted upward and its base is placed back on the ground slightly to the left of its position in Figure P12.8? Explain. Figure P12.8arrow_forwardThe 465-kg uniform I-beam supports the load shown. Determine the reactions at the supports. Answers: Ax= Ay= By= i -5.9 m- 3.1 m 200 kg zzzarrow_forwarde. Determine the internal moment at A caused by the vertical loading. Figurearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY