EBK PHYSICS FOR SCIENTISTS AND ENGINEER
1st Edition
ISBN: 9780100546714
Author: Katz
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 33PQ
Problems 33 and 34 are paired.
One end of a uniform beam that weighs 2.80 × 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable.
FIGURE P14.33 Problems 33 and 34.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. What is the tension in the cable?
B. Find the magnitude of the force the hinge exerts on the bridge.
NO 4.
End A of the bar AB Figure P11.53
in Fig. P11.53 rests on a fric-
tionless horizontal surface, and
В
end B is hinged. A horizontal
force F of magnitude 160 N is
5.00 m
4.00 m
exerted on end A. You can
ignore the weight of the bar.
A
What are the horizontal and
vertical components of the
force exerted by the bar on the
hinge at B?
Figure P11.54
A 800 N man is standing on a 4 m long plank of wood that is supported at each end by vertical ropes. The plank has a weight of 500 N and the man is standing 1 m from the left end. Find the force of tension in the rope at the left end of the plank.
Chapter 14 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 14.1 - A rubber duck floats in a bathtub. Imagine moving...Ch. 14.1 - Prob. 14.2CECh. 14.2 - CASE STUDY Hanging a Plane from a Single Point In...Ch. 14.2 - Prob. 14.4CECh. 14.4 - Imagine two vertical rods initially of equal...Ch. 14 - What Is Static Equilibrium? Problems 13 are...Ch. 14 - Prob. 2PQCh. 14 - Two identical balls are attached to a...Ch. 14 - While working on homework together, your friend...Ch. 14 - Consider the sketch of a portion of a...
Ch. 14 - Prob. 6PQCh. 14 - Prob. 7PQCh. 14 - Prob. 8PQCh. 14 - The keystone of an arch is the stone at the top...Ch. 14 - Prob. 10PQCh. 14 - Stand straight and comfortably with your feet...Ch. 14 - Prob. 12PQCh. 14 - Prob. 13PQCh. 14 - Prob. 14PQCh. 14 - Prob. 15PQCh. 14 - Prob. 16PQCh. 14 - Prob. 17PQCh. 14 - Prob. 18PQCh. 14 - Prob. 19PQCh. 14 - Prob. 20PQCh. 14 - Prob. 21PQCh. 14 - The inner planets of our solar system are...Ch. 14 - Two Boy Scouts, Bobby and Jimmy, are carrying a...Ch. 14 - Prob. 24PQCh. 14 - A painter of mass 87.8 kg is 1.45 m from the top...Ch. 14 - Consider the situation in Problem 25. Tests have...Ch. 14 - Children playing pirates have suspended a uniform...Ch. 14 - Prob. 28PQCh. 14 - Prob. 29PQCh. 14 - A 5.45-N beam of uniform density is 1.60 m long....Ch. 14 - A wooden door 2.1 m high and 0.90 m wide is hung...Ch. 14 - A 215-kg robotic arm at an assembly plant is...Ch. 14 - Problems 33 and 34 are paired. One end of a...Ch. 14 - For the uniform beam in Problem 33, find the...Ch. 14 - Prob. 35PQCh. 14 - A square plate with sides of length 4.0 m can...Ch. 14 - Prob. 37PQCh. 14 - At a museum, a 1300-kg model aircraft is hung from...Ch. 14 - A uniform wire (Y = 2.0 1011 N/m2) is subjected...Ch. 14 - A brass wire and a steel wire, both of the same...Ch. 14 - In Example 14.3, we found that one of the steel...Ch. 14 - A carbon nanotube is a nanometer-scale cylindrical...Ch. 14 - A nanotube with a Youngs modulus of 1.000 1012 Pa...Ch. 14 - Consider a nanotube with a Youngs modulus of 2.130...Ch. 14 - Prob. 45PQCh. 14 - Use the graph in Figure P14.46 to list the three...Ch. 14 - Prob. 47PQCh. 14 - A company is testing a new material made of...Ch. 14 - Prob. 49PQCh. 14 - Prob. 50PQCh. 14 - Prob. 51PQCh. 14 - Prob. 52PQCh. 14 - Prob. 53PQCh. 14 - Prob. 54PQCh. 14 - Prob. 55PQCh. 14 - Prob. 56PQCh. 14 - A copper rod with length 1.4 m and cross-sectional...Ch. 14 - Prob. 58PQCh. 14 - Prob. 59PQCh. 14 - Bruce Lee was famous for breaking concrete blocks...Ch. 14 - Prob. 61PQCh. 14 - Prob. 62PQCh. 14 - Prob. 63PQCh. 14 - A One end of a metal rod of weight Fg and length L...Ch. 14 - Prob. 65PQCh. 14 - A steel cable 2.00 m in length and with...Ch. 14 - Prob. 67PQCh. 14 - Prob. 68PQCh. 14 - Prob. 69PQCh. 14 - Prob. 70PQCh. 14 - Prob. 71PQCh. 14 - Prob. 72PQCh. 14 - Prob. 73PQCh. 14 - We know from studying friction forces that static...Ch. 14 - Ruby, with mass 55.0 kg, is trying to reach a box...Ch. 14 - An object is being weighed using an unequal-arm...Ch. 14 - Prob. 77PQCh. 14 - A massless, horizontal beam of length L and a...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A rod of length 4.00 m with negligible mass is...Ch. 14 - A horizontal, rigid bar of negligible weight is...Ch. 14 - Prob. 82PQCh. 14 - Prob. 83PQCh. 14 - Prob. 84PQCh. 14 - Prob. 85PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A massless, horizontal beam of length L and a massless rope support a sign of mass m (Fig. P14.78). a. What is the tension in the rope? b. In terms of m, g, d, L, and , what are the components of the force exerted by the beam on the wall? FIGURE P14.78arrow_forwardAt a museum, a 1300-kg model aircraft is hung from a lightweight beam of length 12.0 m that is free to pivot about its base and is supported by a massless cable (Fig. P14.38). Ignore the mass of the beam. a. What is the tension in the section of the cable between the beam and the wall? b. What are the horizontal and vertical forces that the pivot exerts on the beam? FIGURE P14.38 (a) From the free-body diagram, the angle that the string tension makes with the beam is = 55.0 + 18.0 = 73.0, and the perpendicular component of the string tension is FT sin73.0. Summing torques around the base of the rod gives (Eq. 14.2): =0:(12.0m)(1300kg)(9.81m/s2)cos55.0+FT(12.0m)sin73.0=0FT=(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0FT=7.65103N Figure P14.38ANS (b) Using force balance (Eq. 14.1): Fx=0:FHFTcos18.0=0FH=FTcos18.0=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]cos18.0=7.27103NFy=0:FVFTsin18.0(1300kg)(9.81m/s2)=0 FV=FTsin18.0+(1300kg)gFV=[(12.0m)(1300kg)(9.81m/s2)cos55.0(12.0m)sin73.0]sin18.0+(1300kg)(9.81m/s2)FV=1.51104Narrow_forwardA 215-kg robotic arm at an assembly plant is extended horizontally (Fig. P14.32). The massless support rope attached at point B makes an angle of 15.0 with the horizontal, and the center of mass of the arm is at point C. a. What is the tension in the support rope? b. What are the magnitude and direction of the force exerted by the hinge A on the robotic arm to keep the arm in the horizontal position? FIGURE P14.32arrow_forward
- A 5.45-N beam of uniform density is 1.60 m long. The beam is supported at an angle of 35.0 by a cable attached to one end. There is a pin through the other end of the beam (Fig. P14.30). Use the values given in the figure to find the tension in the cable. FIGURE P14.30arrow_forwardRuby, with mass 55.0 kg, is trying to reach a box on a high shelf by standing on her tiptoes. In this position, half her weight is supported by the normal force exerted by the floor on the toes of each foot as shown in Figure P14.75A. This situation can be modeled mechanically by representing the force on Rubys Achilles tendon with FA and the force on her tibia as FT as shown in Figure P14.75B. What is the value of the angle and the magnitudes of the forces FA and FT? FIGURE P14.75arrow_forwardChildren playing pirates have suspended a uniform wooden plank with mass 15.0 kg and length 2.50 m as shown in Figure P14.27. What is the tension in each of the three ropes when Sophia, with a mass of 23.0 kg, is made to walk the plank and is 1.50 m from reaching the end of the plank? FIGURE P14.27arrow_forward
- Consider a nanotube with a Youngs modulus of 2.130 1012 N/m2 that experiences a tensile stress of 5.3 1010 N/m2. Steel has a Youngs modulus of about 2.000 1011 Pa. How much stress would cause a piece of steel to experience the same strain as the nanotube?arrow_forwardA rod of length 4.00 m with negligible mass is hinged to a wall. A rope attached to the end of the rod runs up to the wall at an angle of exactly 45, helping support the rod, while a sign of weight 10.0 N is hanging by two ropes attached to the bottom of the rod. The ropes make an angle of exactly 30 with the rod as shown in Figure P14.79. Another sign with a weight of 10.0 N is attached to the top of the rod with its center of mass at the midpoint of the rod. The entire system is in equilibrium. Find the magnitude of the tension in the rope above the rod that is also attached to the wall. FIGURE P14.79 Problems 79 and 80.arrow_forwardA painter stands on a uniform horizontal beam of length L = 6.0 m that is held in equilibrium by support cables attached to the roof as shown in Figure 3. The beam has a weight Wb = 250.0 N and the tensions on the left and the right ends are measured to be Tl = 360.0 N and Tl = 200.0 N respectively. A. Calculate the weight of the painter Wp , and Wb. the distance x where the painter is standing.arrow_forward
- I need help with all parts.arrow_forwardWhat is T?arrow_forwardThe 3.0-m-long, 100 kg rigid beam of FIGURE EX12.31 is supported at each end. An 80 kg student stands 2.0 m from support 1. How much upward force does each support exert on the beam? FIGURE EX12.31 Support 1 2.0 m 3.0 m Support 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY