General Chemistry: Principles and Modern Applications (11th Edition)
General Chemistry: Principles and Modern Applications (11th Edition)
11th Edition
ISBN: 9780132931281
Author: Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 104IAE
Interpretation Introduction

(a)

Interpretation:

Equivalence of the magnitude of molality and the molarity in a dilute aqueous solution should be demonstrated.

Concept introduction:

The molarity, molality and density of a solution can be calculated as follows:

Molarity (M) = amount of solute (moles)volume of solution (liters)Molality (m) = amount of solute (moles)mass of solvent (kilograms)Density = MassVolume

Interpretation Introduction

(b)

Interpretation:

In a dilute solution, proportionality of the solute mole fraction to the molality should be demonstrated.

Concept introduction:

In a dilute solution, solvent concentration is larger than the solute concentration.

Molality (m) = amount of solute (moles)mass of solvent (kilograms)Solute mole fraction = XB=nBnA+nBSolvent mole fraction = XA=nAnA+nBNumber of moles = Mass (W)Molecular mass (M)

Interpretation Introduction

(c)

Interpretation:

In a dilute aqueous solution, proportionality of the solute mole fraction to the molarity should be demonstrated.

Concept introduction:

In an aqueous solution, solvent is water. A dilute aqueous solution, water concentration is larger than the solute concentration.

Molarity (M) = amount of solute (moles)volume of solution (liters)

Solute mole fraction = XB=nBnA+nBSolvent mole fraction = XA=nAnA+nBNumber of moles = Mass (W)Molecular mass (M)

Blurred answer
Students have asked these similar questions
17) Calculate the mole fraction of solute and solvent in a 3.0 m solution of sodium chloride. Converting from one concentration unit to another is accomplished by first comparing the two unit definitions. In this case, both units have the same numerator (moles of solute) but different denominators. The provided molal concentration may be written as: 3.0molNaCl1.0kgH2O The numerator for this solution's mole fraction is, therefore, 3.0 mol NaCl. The denominator may be computed by deriving the molar amount of water corresponding to 1.0 kg 1.0kgH2O(1000g1kg)(molH2O18.02g)=55molH2O and then substituting these molar amounts into the definition for mole fraction. XH:0=molH2OmolINaC+molH:0XH:0=55molH:03.0molNaC+55molH:0XH:0=0.9 5 XNaCI=molNaClmolNaCl+molH20XNaC=3.0molNaC13.0molNaC+55molH20XNaC=0.05 2 Learn By Doing The mole fraction of iodine, I,, dissolved in dichloromethane, CH,Cl, is 0.115. What is the molal concentration, m, of iodine in this solution? First, assume that this solution with…
Colligative properties, such as boiling point elevation, depend on the number of dissolved particles in solution. For nonelectrolytes, no dissociation occurs, and so you can use the number of moles of solute to calculate both molality and molarity. In contrast, electrolytes dissociate, and therefore the molality and molarity must be calculated based on the number of moles of dissociated particles or ions. There are two ions per formula unit of NaCl. Therefore, we would expect the freezing-point depression AT of a NaCl solution to be twice that of a sugar solution of the same concentration. However, it has been experimentally determined that in the typical unsaturated solution AT for the salt solution is only 1.9 times that of the sugar solution. This indicates that not all ion pairs in the NaCl solution are dissociated. The number 1.9 is called the van't Hoff factor (symbolized by i) and can be thought of as the number of dissociated particles per NaCl formula unit. This factor changes…
The vapor pressure of an ideal aqueous glucose, C6H12O6, solution at 37 deg C is 10.4 torr. Compute for the molar fraction of the solute given that the vapor pressure of pure water at 37 deg C is 47.1 torr. Express your answer in two decimal places.

Chapter 14 Solutions

General Chemistry: Principles and Modern Applications (11th Edition)

Ch. 14 - Prob. 11ECh. 14 - You are asked to prepare 125.0 mL of 0.0321 M...Ch. 14 - Prob. 13ECh. 14 - Prob. 14ECh. 14 - Prob. 15ECh. 14 - Prob. 16ECh. 14 - The sulfate ion level in a municipal water supply...Ch. 14 - A water sample is found to have 9.4 ppb of...Ch. 14 - Prob. 19ECh. 14 - Prob. 20ECh. 14 - How many milliliters at the ethanol-water solution...Ch. 14 - Prob. 22ECh. 14 - What is the molarity of CO2 in liter ocean water...Ch. 14 - Prob. 24ECh. 14 - Prob. 25ECh. 14 - Prob. 26ECh. 14 - How many grams of iodine, l2 , must be dissolved...Ch. 14 - How many grams of water would you add to 1.00 kg...Ch. 14 - Prob. 29ECh. 14 - A 10.00%-by-man solution of ethanol, CH2CH2OH , in...Ch. 14 - Prob. 31ECh. 14 - Prob. 32ECh. 14 - Prob. 33ECh. 14 - Prob. 34ECh. 14 - What volume of glycerol,...Ch. 14 - Prob. 36ECh. 14 - Prob. 37ECh. 14 - The amount of CO2 in the ocean is approximately...Ch. 14 - Prob. 39ECh. 14 - Prob. 40ECh. 14 - Prob. 41ECh. 14 - Prob. 42ECh. 14 - Under an O2(g) pressure of 1.00 atm, 28.31mL of...Ch. 14 - Prob. 44ECh. 14 - Natural gas consists about 90% methane, CM. Assume...Ch. 14 - At 1.00 atm, the solubility of O2 in water is...Ch. 14 - The aqueous solubility at 20C of Ar at 1.00 atm...Ch. 14 - Prob. 48ECh. 14 - Prob. 49ECh. 14 - Prob. 50ECh. 14 - What are the partial and total vapor pressures of...Ch. 14 - Prob. 52ECh. 14 - Calculate the vapor pressure at 25C of a solution...Ch. 14 - Calculate the vapor pressure at 20C of a saturated...Ch. 14 - Styrene, used in the manufacture of polystyrene...Ch. 14 - Prob. 56ECh. 14 - A benzene-toluene solution with banz=0.300 has a...Ch. 14 - Prob. 58ECh. 14 - Prob. 59ECh. 14 - Prob. 60ECh. 14 - Prob. 61ECh. 14 - Prob. 62ECh. 14 - Prob. 63ECh. 14 - Prob. 64ECh. 14 - Prob. 65ECh. 14 - Use the concentration of an istonic solution,...Ch. 14 - Prob. 67ECh. 14 - The two solutions pictured here are separated by a...Ch. 14 - of an unknown compound reduces e freezing point of...Ch. 14 - Prob. 70ECh. 14 - Prob. 71ECh. 14 - Prob. 72ECh. 14 - A compound is 42.9% C, 2.4% H, 16.7%N, and 38.1%...Ch. 14 - Nicotinamide is a water-soluble vitamin important...Ch. 14 - Prob. 75ECh. 14 - Coniferin is glycoside (a derivative of a sugar)...Ch. 14 - Cooks often add some salt to water before boding...Ch. 14 - An important test for the purity of an organic...Ch. 14 - Prob. 79ECh. 14 - If ocean water consisted of 3.5% salt, what would...Ch. 14 - Predict the approximate freezing points of 0.10m...Ch. 14 - Calculate the van’t Hoff factors of the following...Ch. 14 - NH2(aq) conducts electric current only weakly. The...Ch. 14 - Prob. 84ECh. 14 - Prob. 85ECh. 14 - Prob. 86ECh. 14 - Prob. 87IAECh. 14 - Prob. 88IAECh. 14 - Prob. 89IAECh. 14 - Prob. 90IAECh. 14 - A solid mixture consists of 85.0% KNO2 and 15.0%...Ch. 14 - Suppose you have available 2.50 L of a solution (d...Ch. 14 - Prob. 93IAECh. 14 - Prob. 94IAECh. 14 - Prob. 95IAECh. 14 - Nitrobenzene, C6H2NO2 , and benzene, C6H8 , are...Ch. 14 - Prob. 97IAECh. 14 - Prob. 98IAECh. 14 - Prob. 99IAECh. 14 - Suppose that I 00mg of gold obtained in a...Ch. 14 - At 20C , liquid benzene has a density of...Ch. 14 - The two compounds whose structures are depicted...Ch. 14 - Prob. 103IAECh. 14 - Prob. 104IAECh. 14 - Prob. 105IAECh. 14 - We noted m Figure 14-17 that the liquid and vapor...Ch. 14 - A saturated solution prepared at 70C contains...Ch. 14 - Prob. 108IAECh. 14 - Prob. 109IAECh. 14 - Prob. 110IAECh. 14 - Prob. 111IAECh. 14 - Prob. 112IAECh. 14 - Prob. 113FPCh. 14 - The phase diagram shown is for mixtures of HCI and...Ch. 14 - The laboratory device pictured on the following...Ch. 14 - Prob. 116FPCh. 14 - Prob. 117SAECh. 14 - Briefly describe each of the following ides or...Ch. 14 - Explain the important distinctions between each...Ch. 14 - Prob. 120SAECh. 14 - Prob. 121SAECh. 14 - Prob. 122SAECh. 14 - Prob. 123SAECh. 14 - An ideal liquid solution has two volatile...Ch. 14 - Prob. 125SAECh. 14 - Prob. 126SAECh. 14 - A solution (d=1.159g/mL) is 62.0% glycerol,...Ch. 14 - Prob. 128SAECh. 14 - Prob. 129SAECh. 14 - Prob. 130SAECh. 14 - Prob. 131SAECh. 14 - Prob. 132SAECh. 14 - Prob. 133SAECh. 14 - What is the mole fractions of a monvolatile solute...Ch. 14 - What is the osmotic pressure, in bar, of 15.2L of...Ch. 14 - What is the weight percent of 23.4 g of CaF2 if...Ch. 14 - Prob. 137SAECh. 14 - Prob. 138SAE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
    Text book image
    Chemistry: Matter and Change
    Chemistry
    ISBN:9780078746376
    Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
    Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Solutions: Crash Course Chemistry #27; Author: Crash Course;https://www.youtube.com/watch?v=9h2f1Bjr0p4;License: Standard YouTube License, CC-BY