Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977305
Author: BEER, Ferdinand P. (ferdinand Pierre), Johnston, E. Russell (elwood Russell), Cornwell, Phillip J., SELF, Brian P.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.1, Problem 12.51P
A carnival ride is designed to allow the general public to experience high acceleration motion. The ride rotates about point O in a horizontal circle such that the rider has a speed v0. The rider reclines on a platform A which rides on rollers such that friction is negligible. A
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
* Incorrect
A 2.9-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed
of 8.0 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate at
which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible.
3.1'
ACO
Answers:
N =
v=
i
-0.848
-16.73
lb
ft/sec²
2. (25) The small 2-kg block A slides down the
curved path and passes the lowest point B with a
speed of 4 m/s. If the radius of curvature of the path
at B is 1.5 m, and the coefficient of friction between
the block and path is 0.3, determine (a) the normal
force exerted on the block by the path at B, and (b)
the rate of change of speed at this point.
B
A robot arm moves in the vertical plane so that the 0.14-kg cylinder P travels in a circle about point B, which is not
moving. Know that arm BP starts from rest in a horizontal position and that the speed of Pincreases at a constant rate
of 200 mm/s².
0.8 m
Draw the free-body diagram of the cylinder P that is required to determine the force acting on the cylinder.
(You must provide an answer before moving on to the next part.)
0.8 m
P
1
I
Chapter 12 Solutions
Vector Mechanics For Engineers
Ch. 12.1 - A 1000-Ib boulder B is resting on a 200-Ib...Ch. 12.1 - Marble A is placed in a hollow tube, and the tube...Ch. 12.1 - The two systems shown start from rest. On the...Ch. 12.1 - Prob. 12.CQ4PCh. 12.1 - People sit on a Ferris wheel at points A, B, C,...Ch. 12.1 - Crate A is gently placed with zero initial...Ch. 12.1 - Prob. 12.F2PCh. 12.1 - Objects A, B, and C have masses mA, mB, and...Ch. 12.1 - Blocks A and B have masses mAand mB, my...Ch. 12.1 - Blocks A and B have masses mAand mB, my...
Ch. 12.1 - A pilot of mass m flies a jet in a half-vertical...Ch. 12.1 - Wires AC and BC are attached to a sphere that...Ch. 12.1 - A collar of mass m is attached to a spring and...Ch. 12.1 - Four pins slide in four separate slots cut in a...Ch. 12.1 - At the instant shown, the length of the boom AB is...Ch. 12.1 - Prob. 12.F11PCh. 12.1 - Pin B has a mass m and slides along the slot in...Ch. 12.1 - Prob. 12.1PCh. 12.1 - Prob. 12.2PCh. 12.1 - Prob. 12.3PCh. 12.1 - A spring scale A and a lever scale B having equal...Ch. 12.1 - A loading car is at rest on a track forming an...Ch. 12.1 - A 0.5-oz model rocket is launched vertically from...Ch. 12.1 - Determine the maximum theoretical speed that may...Ch. 12.1 - A tugboat pulls a small barge through a harbor....Ch. 12.1 - If an automobile's braking distance from 108 km/h...Ch. 12.1 - A 4-kg package is released from rest at point A...Ch. 12.1 - The coefficients of friction the load and the...Ch. 12.1 - A light train made up of two cars is traveling at...Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - The two blocks shown are originally at rest....Ch. 12.1 - Each of the systems shown is initially at rest....Ch. 12.1 - Boxes A and B are at rest on a conveyor belt that...Ch. 12.1 - A 5000-1b truck is being used to lift a 1000-1b...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Block A has a mass of 40 kg, and block B has a...Ch. 12.1 - Prob. 12.20PCh. 12.1 - Prob. 12.21PCh. 12.1 - To unload a bound stack of plywood from a truck;...Ch. 12.1 - To transport a series of bundles of shingles A to...Ch. 12.1 - Prob. 12.24PCh. 12.1 - Determine the maximum theoretical speed that a...Ch. 12.1 - Prob. 12.26PCh. 12.1 - A spring AB of constant k is attached to a support...Ch. 12.1 - Prob. 12.28PCh. 12.1 - Prob. 12.29PCh. 12.1 - An athlete pulls handle A to the left with a...Ch. 12.1 - A 10-Ib block B rests as shown on a 20-1b bracket...Ch. 12.1 - Prob. 12.32PCh. 12.1 - Knowing that k=0.30 , determine the acceleration...Ch. 12.1 - The 30-Ib block B is supported by the 55-Ib block...Ch. 12.1 - Block B of mass 10 kg rests as shown on the upper...Ch. 12.1 - Knowing that the swings of an amusement park ride...Ch. 12.1 - During a hammer thrower's practice swings, the...Ch. 12.1 - Prob. 12.38PCh. 12.1 - A single wire ACB passes through a ring at C...Ch. 12.1 - Two wires AC and BC are tied at C to a sphere that...Ch. 12.1 - Prob. 12.41PCh. 12.1 - Prob. 12.42PCh. 12.1 - As part of an outdoor display, a 5-kg model C of...Ch. 12.1 - A 130-ib wrecking ball B is attached to a...Ch. 12.1 - During a high-speed chase, a 2400-Ib sports car...Ch. 12.1 - An airline pilot climbs to a new flight level...Ch. 12.1 - The roller-coaster track shown is contained in a...Ch. 12.1 - A spherical-cap governor is fixed to a vertical...Ch. 12.1 - A series of small packages, each with a mass of...Ch. 12.1 - A 55-kg pilot flies a jet trainer in a half...Ch. 12.1 - A carnival ride is designed to allow the general...Ch. 12.1 - Prob. 12.52PCh. 12.1 - Prob. 12.53PCh. 12.1 - Prob. 12.54PCh. 12.1 - A 3-kg block is at rest relative to a parabolic...Ch. 12.1 - A polisher is started so that the fleece along the...Ch. 12.1 - Prob. 12.57PCh. 12.1 - The carnival ride from Prob. 12.51 is modified so...Ch. 12.1 - Prob. 12.59PCh. 12.1 - Prob. 12.60PCh. 12.1 - Prob. 12.61PCh. 12.1 - Prob. 12.62PCh. 12.1 - Prob. 12.63PCh. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - A small 250-g collar C can slide on a semicircular...Ch. 12.1 - An advanced spatial disorientation trainer allows...Ch. 12.1 - Prob. 12.67PCh. 12.1 - The 3-kg collar B slides on the frictionless arm...Ch. 12.1 - A 0.5-kg block B slides without friction inside a...Ch. 12.1 - Pin B weighs 4 oz and is free to slide in a...Ch. 12.1 - The parasailing system shown uses a winch to let...Ch. 12.1 - A 700-kg horse A lifts a 50-kg hay bale B as...Ch. 12.1 - Slider C has a weight of 0.5 Ib and may move in a...Ch. 12.2 - A particle of mass m is projected from point A...Ch. 12.2 - For the particle of Prob. 12.74, show (a) that the...Ch. 12.2 - Prob. 12.76PCh. 12.2 - For the particle of Prob. 12.76, determine the...Ch. 12.2 - Determine the mass of the earth knowing that the...Ch. 12.2 - Prob. 12.79PCh. 12.2 - Prob. 12.80PCh. 12.2 - Prob. 12.81PCh. 12.2 - The orbit of the planet Venus is nearly circular...Ch. 12.2 - A satellite is placed into a circular orbit about...Ch. 12.2 - The periodic time (see Prob. 12.83) of an earth...Ch. 12.2 - Prob. 12.85PCh. 12.2 - Prob. 12.86PCh. 12.2 - Prob. 12.87PCh. 12.2 - Prob. 12.88PCh. 12.2 - Prob. 12.89PCh. 12.2 - A 1 -kg collar can slide on a horizontal rod that...Ch. 12.2 - A 1-Ib ball A and a 2-Ib ball B are mounted on a...Ch. 12.2 - Two 2.6-Ib collars A and B can slide without...Ch. 12.2 - A small ball swings in a horizontal circle at the...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A uniform crate C with mass m is being transported...Ch. 12.3 - A particle of mass m is projected from point A...Ch. 12.3 - A particle of mass m describes the logarithmic...Ch. 12.3 - Prob. 12.96PCh. 12.3 - Prob. 12.97PCh. 12.3 - Prob. 12.98PCh. 12.3 - It was observed that during the Galileo...Ch. 12.3 - Prob. 12.100PCh. 12.3 - Prob. 12.101PCh. 12.3 - Prob. 12.102PCh. 12.3 - Prob. 12.103PCh. 12.3 - A satellite describes a circular orbit at an...Ch. 12.3 - A space probe is to be placed in a circular orbit...Ch. 12.3 - Prob. 12.106PCh. 12.3 - Prob. 12.107PCh. 12.3 - Prob. 12.108PCh. 12.3 - Prob. 12.109PCh. 12.3 - Prob. 12.110PCh. 12.3 - Prob. 12.111PCh. 12.3 - Prob. 12.112PCh. 12.3 - Prob. 12.113PCh. 12.3 - Prob. 12.114PCh. 12.3 - Prob. 12.115PCh. 12.3 - Prob. 12.116PCh. 12.3 - Prob. 12.117PCh. 12.3 - A satellite describes an elliptic orbit about a...Ch. 12.3 - Prob. 12.119PCh. 12.3 - Prob. 12.120PCh. 12.3 - Show that the angular momentum per unit mass h of...Ch. 12 - In the braking test of a sports car, its velocity...Ch. 12 - A bucket is attached to a rope of length L=1.2 m...Ch. 12 - Block A has a weight of 40 Ib, and block B has a...Ch. 12 - Prob. 12.125RPCh. 12 - Prob. 12.126RPCh. 12 - The parasailing system shown uses a winch to pull...Ch. 12 - A robot arm moves in the vertical plane so that...Ch. 12 - Telemetry technology is used to quantify kinematic...Ch. 12 - Prob. 12.130RPCh. 12 - Prob. 12.131RPCh. 12 - Prob. 12.132RPCh. 12 - Disk A rotates in a horizontal plane about a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Block A of mass m is placed on the inclined surface of wedge B. The static coefficient of friction between A and B is 0.4. Determine the smallest acceleration a of the wedge that would cause the block to slide up the inclined surface.arrow_forwardThe two blocks shown start from rest. The horizontal plane and the pulley are frictionless, and the pulley is assumed to be of negligible mass. Determine the acceleration of each block and the tension in each cable. A Cable 1 100 kg Cable 2 300 kg вarrow_forward3. A 2-kg ball S is moved in the vertical plane by a robotic arm. When 0= 30°, the angular velocity of the arm about a horizontal axis through O is 50 deg/s clockwise, and the angular acceleration is 200 deg/s² counterclockwise. In addition, the hydraulic element is being shortened at the constant rate of 500 mm/s. Find the minimum gripping force needed to hold the ball is the coefficient of friction between the sphere and gripping surfaces is 0.5. Compare this force to the force needed to hold the sphere in static equilibrium.arrow_forward
- If the coefficients of static and kinetic friction between the 30-kg block A and the 83-kg cart B are both essentially the same value of 0.56, determine the acceleration of each part for (a) P = 114 N and (b) P = 88 N.arrow_forwardThe 23-lb crate is lifted with a constant acceleration of 6.0 ft/s^2 . Knowing that the weight of the uniform beam AB is 235 lb, determine the magnitude of the resultant total reaction force on the embedded support A. Neglect the size and mass of pulley B. -5 ft B 16 ft/s²arrow_forwardKnowing that the coefficient of static friction between the tires and the road is 0.80 for the automobile shown, determine the maximum possible acceleration on a level road, assuming rear- wheel drive 20 in. 60 in. 40 in.arrow_forward
- A 2.8-lb slider is propelled upward at A along the fixed curved bar which lies in a vertical plane. If the slider is observed to have a speed of 7.8 ft/sec as it passes position B, determine (a) the magnitude N of the force exerted by the fixed rod on the slider and (b) the rate v at which the speed of the slider is changing (positive if speeding up, negative if slowing down). Assume that friction is negligible. 28 2.2' Answers: N = i Ib v= i ft/sec?arrow_forwardThe "flying car" is a ride at an amusement park which consists of a car having wheels that roll along a track mounted inside a rotating drum. By design the car cannot fall off the track, however motion of the car is developed by applying the car's brake, thereby gripping the car to the track and allowing it to move with a constant speed of the track, vt = 3 m/s. The rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B (0 = π rad). Neglect friction during the motion from A to B. The rider and car have a total mass of 390 kg and the center of mass of the car and rider moves along a circular path having a radius of R = 9.8 m. (Figure 1) Figure R Barrow_forwardAn object of mass m1 slides on a sloped block of mass M2, which in turn slides on a horizontal surface. The slope angle is a constant 3, and both masses are initially at rest. There is no friction between any of the objects, and the masses are subject to the force of gravity -mgêy. Use as co- ordinates the horizontal position x2 of mass m2, and the height y1 of mass m1, as shown in the y4 Y1 M2 x2 diagram to the right. Find the equation of motion of block 2, ä2(t). The expression should only include expressions involving constants: M2, m1, g, and B.arrow_forward
- IV. For the following system that starts from rest, the spool has a weight of 300 N and a radius of gyration ke = 0.3 m, and block A is attached to it as shown of weight 200 N. A constant horizontal force F is applied to the cord in order to give the block an upward speed of 5 m/s. (Neglect mass of cord and tension force). -F 1. Draw the free body diagram of the system. 2. Calculate the angular speed of the spool at t= 6 seconds. 3. Calculate the vertical reaction force at the pin at t= 6 seconds. 4. Calculate the horizontal force F.arrow_forwardUse the D'Alembert's principle to determine (Showing the free body diagrams and all steps of your solution): A. The expression of the acceleration of the two masses in terms of M1 and M2. B. The tension in the rope in terms of M¡ and M2. C. If M1 = 30 kg, M2 = 10 kg, determine the acceleration of two blocks and the tension in the rope. (Taking in consideration that the gravitational acceleration, g = 9.81 m/s²). D. If M2 is reduced to 5 kg and Mı remains the same (30 kg) what will be the new acceleration. How does the amount of mass M2 affect the acceleration? Repeat the problem if Mı= 15 kg and M2=10 kg. What do you conclude. Non-frictional surface M2 Activatearrow_forwardIn a governor of the Hartnell type the arms of the bell-crank leversare equal in length, and those carrying the operating masses arevertical when the governor is rotating at its mean speed of 775rev/min, with the masses moving in a circle of 175 mm diameter -The usual central controlling spring is replaced by two paralleltension springs direetly connecting the operating masses. Find(a) the magnitude of each operating mass if a force of 90 N isrequired at the sleeve to maintain it in the mean speed positionwhen the specd is increased from 775 to 800 rev/m in(b) the stiffness, or rate, of each spring if the ratio of sleevemovement to increase of speed is 1 mm to 10 revImin when inthe mean speed position.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY