Integrated Science
7th Edition
ISBN: 9780077862602
Author: Tillery, Bill W.
Publisher: Mcgraw-hill,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 6PEB
To determine
The typical temperature for a blue Star.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The surface of a star usually has the highest temperature
O True
O False
A star has a luminosity (power output) of 9.2x1026 W and a diameter of 6.1x108 m. What is its surface temperature? (Give your answer in SI units and include the units in your answer.)
If a star has a surface temperature of 18,000 K (1.80 ✕ 104 K), at what wavelength (in nm) will it radiate the most energy? Is this a cool or hot star? (Give your answer relative to the Sun.)
Chapter 12 Solutions
Integrated Science
Ch. 12.1 - Stars twinkle and planets do not twinkle because...Ch. 12.6 - Prob. 2SCCh. 12.6 - Prob. 3SCCh. 12.6 - Prob. 4SCCh. 12.6 - Prob. 5SCCh. 12.6 - Prob. 6SCCh. 12.6 - Prob. 7SCCh. 12.6 - Prob. 8SCCh. 12.7 - Prob. 9SCCh. 12.7 - Prob. 10SC
Ch. 12.7 - Prob. 11SCCh. 12.7 - Prob. 12SCCh. 12 - What is a light-year, and how is it defined?Ch. 12 - Prob. 2CQCh. 12 - Prob. 3CQCh. 12 - What is the Hertzsprung-Russell diagram?Ch. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - Prob. 7CQCh. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Prob. 13CQCh. 12 - Prob. 14CQCh. 12 - Prob. 15CQCh. 12 - Prob. 16CQCh. 12 - Prob. 17CQCh. 12 - Prob. 18CQCh. 12 - Prob. 19CQCh. 12 - Prob. 20CQCh. 12 - Prob. 21CQCh. 12 - Prob. 22CQCh. 12 - Analyze when apparent magnitude is a better scale...Ch. 12 - Prob. 24CQCh. 12 - Prob. 25CQCh. 12 - Prob. 1PEACh. 12 - Prob. 2PEACh. 12 - Prob. 3PEACh. 12 - Prob. 4PEACh. 12 - Prob. 5PEACh. 12 - Prob. 6PEACh. 12 - Prob. 7PEACh. 12 - Prob. 8PEACh. 12 - Prob. 9PEACh. 12 - Prob. 10PEACh. 12 - Prob. 11PEACh. 12 - Prob. 1PEBCh. 12 - Prob. 2PEBCh. 12 - Prob. 3PEBCh. 12 - Prob. 4PEBCh. 12 - Prob. 5PEBCh. 12 - Prob. 6PEBCh. 12 - Prob. 7PEBCh. 12 - Prob. 8PEBCh. 12 - Prob. 9PEBCh. 12 - Prob. 10PEBCh. 12 - Prob. 11PEB
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A G2 star has a luminosity 100 times that of the Sun. What kind of star is it? How does its radius compare with that of the Sun?arrow_forwardWhat measurements would you make (assuming you have the money, time, & equipment) to determine a star’s surface temperature?arrow_forwardThe Hα spectral line has a rest wavelength of 6562.8 ˚A (remember: 1 ˚A = 10−10 m). In star A, the lineis seen at 6568.4 ˚A, in star B it’s seen at 6560.3 ˚A, and in star C it’s seen at 6562.8 ˚A. Which star ismoving the fastest (along the line of sight) and what is the radial velocity of each star?arrow_forward
- In a laboratory, the Balmer-beta spectral line of hydrogen has a wavelength of 486.1 nm . If the line appears in a star’s spectrum at 485.8 nm , what is the star’s radial velocity? Is it approaching or receding? Is this a blueshift or a redshift?arrow_forwardWe will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more luarrow_forward(a) The surface temperature of a star is 25,000 K and it has a luminosity about 1% that of our Sun. What kind of star is it? (B) The surface temperature of a star is 3,000 K and it has a luminosity about 104 time that of our Sun. What kind of star is it?arrow_forward
- Two stars-A and B, of luminosities 0.5 and 4.5 times the observed to have the luminosity of the Sun, respectively-are same apparent brightness. Which star is more distant, and how much farther away is it than the other?arrow_forwardA star has a measured radial velocity of 300 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 657.18 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) nm Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-del ta (410.2 nm)arrow_forwardMany of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and others are blue giants (such as Rigel) or red giants (such as Betelgeuse). Generally, such stars have a luminosity of 103 to 105 times that of our Sun! Ignoring any effects from our atmosphere, how bright would a star with a luminosity of 8380 solar luminosities be if it were located 620 light years from Earth? (You will need to convert some values.) W/m² For comparison, if you were 1 meter from a regular 100 W light bulb, the brightness would be 7.96 W/ m². (Since stars are not this bright, your answer should be considerably less!) Kind of amazing you can see these things, isn't it?arrow_forward
- A star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to? Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm) Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)arrow_forwardf a star has a luminosity of 4*10^26 Watts and a brightness of 1.4*10^3W/m2, how far away is it?arrow_forwardIntegrate the first equation over all wavelengths to find an expression for the total luminosity of a black body star. (See the second equation for a hint)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning