Concept explainers
(a)
Prove that the maximum stretching of spring from mean position is
(a)
Answer to Problem 60P
It is proved that the maximum stretching of spring from mean position is
Explanation of Solution
Write the relation between force on spring and maximum static frictional force.
Here,
Write the expression for
Here,
Rewrite the first equation by substituting the above one.
Conclusion:
Rewrite the expression for
Therefore, it is proved that the maximum stretching of spring from mean position is
(b)
Prove that block oscillates about mean point when spring is stretched by
(b)
Answer to Problem 60P
It is proved that block oscillates about mean point when spring is stretched by
Explanation of Solution
The block will be almost at rest at the break point because of the smaller value of velocity. The block starts to oscillate s soon when the force on block becomes
Here,
Rewrite the above equation by multiplying and dividing the second term with
Express the term
Here,
Rewrite the expression for
Conclusion:
From the above calculation, it is evident that block starts to be in simple harmonic motion about mean position on displacing the spring
Therefore, it is proved that block oscillates about mean point when spring is stretched by
(c)
Plot the variation of position of block with time.
(c)
Answer to Problem 60P
The plot is
Explanation of Solution
The graph is plotted with time on x-axis and position on y-axis.
The dotted line along x-axis denotes the function
Conclusion:
Therefore, the graph is plotted
(d)
Prove that the amplitude of oscillation is
(d)
Answer to Problem 60P
It is proved that the amplitude of oscillation is
Explanation of Solution
Write the expression for
Rewrite the above expression by substituting
Amplitude is the maximum displacement from the mean position only. Rewrite the expression as amplitude.
Here,
On pulling the block to distance
Conclusion:
Therefore, it is proved that the amplitude of oscillation is
(e)
Prove that the period of oscillation is
(e)
Answer to Problem 60P
It is proved that the period of oscillation is
Explanation of Solution
Write the expression for time taken by block to move with the board
Here,
Rewrite the expression by substituting
Time taken by block to move from mean position to an extreme position.
Here,
The period of oscillation is the sum of
Here,
Conclusion:
Rewrite the above equation by substituting the relations for
Therefore, It is proved that the period of oscillation is
Want to see more full solutions like this?
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
- When a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardIn an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x=5.00cos(2t+6) where x is in centimeters and t is in seconds. At t = 0, find (a) the position of the piston, (b) its velocity, and (c) its acceleration. Find (d) the period and (e) the amplitude of the motion.arrow_forwardThe total energy of a simple harmonic oscillator with amplitude 3.00 cm is 0.500 J. a. What is the kinetic energy of the system when the position of the oscillator is 0.750 cm? b. What is the potential energy of the system at this position? c. What is the position for which the potential energy of the system is equal to its kinetic energy? d. For a simple harmonic oscillator, what, if any, are the positions for which the kinetic energy of the system exceeds the maximum potential energy of the system? Explain your answer. FIGURE P16.73arrow_forward
- Consider the simplified single-piston engine in Figure CQ12.13. Assuming the wheel rotates with constant angular speed, explain why the piston rod oscillates in simple harmonic motion. Figure CQ12.13arrow_forwardWhich of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forwardA simple harmonic oscillator has amplitude A and period T. Find the minimum time required for its position to change from x = A to x = A/2 in terms of the period T.arrow_forward
- A block of unknown mass is attached to a spring with a spring constant of 6.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the block is halfway between its equilibrium position and the end point, its speed is measured to be 30.0 cm/s. Calculate (a) the mass of the block, (b) the period of the motion, and (c) the maximum acceleration of the block.arrow_forwardThe amplitude of a lightly damped oscillator decreases by 3.0% during each cycle. What percentage of the mechanical energy of the oscillator is lost in each cycle?arrow_forwardA 500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.arrow_forward
- A particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardThe equations listed in Table 2.2 give position as a function of time, velocity as a function of time, and velocity as a function of position for an object moving in a straight line with constant acceleration. The quantity vxi appears in every equation. (a) Do any of these equations apply to an object moving in a straight line with simple harmonic motion? (b) Using a similar format, make a table of equations describing simple harmonic motion. Include equations giving acceleration as a function of time and acceleration as a function of position. State the equations in such a form that they apply equally to a blockspring system, to a pendulum, and to other vibrating systems. (c) What quantity appears in every equation?arrow_forwardA block of mass m is connected to two springs of force constants k1 and k2 in two ways as shown in Figure P12.56. In both cases, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T=2m(k1+k2)k1k2 and (b) T=2mk1+k2 Figure P12.56arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning