Concept explainers
Review. One end of a light spring with force constant k = 100 N/m is attached to a vertical wall. A light string is tied to the other end of the horizontal spring. As shown in Figure P12.57, the string changes from horizontal to vertical as it passes over a pulley of mass M in the shape of a solid disk of radius R = 2.00 cm. The pulley is free to turn on a fixed, smooth axle. The vertical section of the string supports an object of mass m = 200 g. The string does not slip at its contact with the pulley. The object is pulled downward a small distance and released. (a) What is the angular frequency ω of oscillation of the object in terms of the mass M? (b) What is the highest possible value of the angular frequency of oscillation of the object? (c) What is the highest possible value of the angular frequency of oscillation of the object if the pulley radius is doubled to R = 4.00 cm?
Figure P12.57
Trending nowThis is a popular solution!
Chapter 12 Solutions
Principles of Physics: A Calculus-Based Text
- A square plate with sides 2.0 m in length can rotatearound an axle passingthrough its center of mass(CM) and perpendicular toits surface (Fig. P12.53). There are four forces acting on the plate at differentpoints. The rotational inertia of the plate is 24 kg m2. Use the values given in the figure to answer the following questions. a. Whatis the net torque acting onthe plate? b. What is theangular acceleration of the plate? FIGURE P12.53 Problems 53 and 54.arrow_forwardDisc jockeys (DJs) use a turntable in applying their trade, often using their hand to speed up or slow down a disc record so as to produce a desired change in the sound (Fig. P12.56). Suppose DJ Trick wants to slow down a record initially rotating clockwise (as viewed from above) with an angular speed of 33.0 rpm to an angular speed of 22.0 rpm. The record has a rotational inertia of 0.012 kgm2 and a radius of 0.15 m. a. What angular acceleration is necessary if he wishes to accomplish this feat in exactly 0.65 s with a constant acceleration? b. How many revolutions does the record go through during this change in speed? c. If DJ Trick applies a vertical force with his finger to the edge of the record, with what force must he push so as to slow the record in the above time? Assume the coefficient of kinetic friction between his finger and the record is 0.50, and ignore the mass of the finger. FIGURE P12.56arrow_forwardIn Figure P10.40, the hanging object has a mass of m1 = 0.420 kg; the sliding block has a mass of m2 = 0.850 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is k = 0.250. The pulley turns without friction on its axle. The light cord does not stretch and does not slip on the pulley. The block has a velocity of vi = 0.820 m/s toward the pulley when it passes a reference point on the table. (a) Use energy methods to predict its speed after it has moved to a second point, 0.700 m away. (b) Find the angular speed of the pulley at the same moment. Figure P10.40arrow_forward
- A solid sphere of mass m and radius r rolls without slipping along the track shown in Figure P10.83. It starts from rest with the lowest point of the sphere at height h above the bottom of the loop of radius R, much larger than r. (a) What is the minimum value of h (in terms of R) such that the sphere completes the loop? (b) What are the force components on the sphere at the point P if h = 3R? Figure P10.83arrow_forwardReview. A string is wound around a uniform disk of radius R and mass M. The disk is released from rest with the string vertical and its top end tied to a fixed bar (Fig. P10.78). Show that (a) the tension in the string is one third of the weight of the disk, (b) the magnitude of the acceleration of the center of mass is 2g/3, and (c) the speed of the center of mass is (4gh/3)1/2 after the disk has descended through distance h. (d) Verify your answer to part (c) using the energy approach. Figure P10.78arrow_forwardReview. An object with a mass of m = 5.10 kg is attached to the free end of a light string wrapped around a reel of radius R = 0.250 m and mass M = 3.00 kg. The reel is a solid disk, free to rotate in a vertical plane about the horizontal axis passing through its center as shown in Figure P10.45. The suspended object is released from rest 6.00 m above the floor. Determine (a) the tension in the string, (b) the acceleration of the object, and (c) the speed with which the object hits the floor. (d) Verify your answer to part (c) by using the isolated system (energy) model. Figure P10.45arrow_forward
- A square plate with sides of length 4.0 m can rotate about an axle passing through its center of mass and perpendicular to the plate as shown in Figure P14.36. There are four forces acting on the plate at different points. The rotational inertia of the plate is 24 kgm2. Is the plate in equilibrium? FIGURE P14.36arrow_forwardA disk with a radius of 4.5 m has a 100-N force applied to its outer edge at two different angles (Fig. P12.55). The disk has arotational inertia of 165 kg m2. a. What is the magnitude of the torque applied to the disk incase 1? b. What is the magnitude of the torque applied to the disk incase 2? c. Assuming the force on the disk is constant in each case,what is the magnitude of the angular acceleration applied tothe disk in each case? d. Which case is a more effective way of spinning the disk?Describe which quantity you are using to determine effectiveness and why you chose that quantity. FIGURE P12.55arrow_forwardA disk rolls up an inclined plane as shown in Figure P12.16, reaches point A, stops there momentarily, and then rolls down the inclined plane. Use the coordinate system shown to determine the direction of the angular velocity and the angular acceleration in each part of the motion as given below. If either one is zero, say so. Explain your answers. a. When the disk is going up the incline. b. At point A when the disk stops momentarily. c. When the disk is rolling down the incline FIGURE P12.16arrow_forward
- A ball of mass M = 5.00 kg and radius r = 5.00 cm isattached to one end of a thin,cylindrical rod of length L = 15.0 cm and mass m = 0.600 kg.The ball and rod, initially at restin a vertical position and freeto rotate around the axis shownin Figure P13.70, are nudgedinto motion. a. What is therotational kinetic energy of thesystem when the ball and rodreach a horizontal position? b. What is the angular speed of the ball and rod when they reach a horizontal position? c. What is the linear speed of the centerof mass of the ball when the ball and rod reach a horizontalposition? d. What is the ratio of the speed found in part (c) tothe speed of a ball that falls freely through the same distance? FIGURE P13.70arrow_forwardFigure P10.16 shows the drive train of a bicycle that has wheels 67.3 cm in diameter and pedal cranks 17.5 cm long. The cyclist pedals at a steady cadence of 76.0 rev/min. The chain engages with a front sprocket 15.2 cm in diameter and a rear sprocket 7.00 cm in diameter. Calculate (a) the speed of a link of the chain relative to the bicycle frame, (b) the angular speed of the bicycle wheels, and (c) the speed of the bicycle relative to the road. (d) What pieces of data, if any, are not necessary for the calculations? Figure P10.16arrow_forwardA uniform beam resting on two pivots has a length L = 6.00 m and mass M = 90.0 kg. The pivot under the left end exerts a normal force n1 on the beam, and the second pivot located a distance = 4.00 m from the left end exerts a normal force n2. A woman of mass m = 55.0 kg steps onto the left end of the beam and begins walking to the right as in Figure P10.28. The goal is to find the womans position when the beam begins to tip. (a) What is the appropriate analysis model for the beam before it begins to tip? (b) Sketch a force diagram for the beam, labeling the gravitational and normal forces acting on the beam and placing the woman a distance x to the right of the first pivot, which is the origin. (c) Where is the woman when the normal force n1 is the greatest? (d) What is n1 when the beam is about to tip? (e) Use Equation 10.27 to find the value of n2 when the beam is about to tip. (f) Using the result of part (d) and Equation 10.28, with torques computed around the second pivot, find the womans position x when the beam is about to tip. (g) Check the answer to part (e) by computing torques around the first pivot point. Figure P10.28arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning