Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
Question
Book Icon
Chapter 12, Problem 35P

(a)

To determine

The maximum speed of the bob.

(a)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum speed of the bob is 0.820m/s .

Explanation of Solution

Section 1:

To determine: The amplitude of the motion.

Answer: The maximum speed of the amplitude of the motion is 0.262m .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate amplitude is,

A=Lθ

  • L is the length of pendulum.
  • θ is the displaced angle.

Substitute 1.00m for L and 15.0° for θ in above equation to find A .

A=(1.00m)(15.0°(π180°))=0.262m

Section 2:

To determine: The angular frequency of the motion.

Answer: The angular frequency of the motion is 3.13rad/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate angular frequency is,

ω=gL

  • g is the acceleration due to gravity.

Substitute 1.00m for L and 9.8m/s2 for g in above equation to find ω .

ω=9.8m/s21.00m=3.13rad/s

Section 3:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.820m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum speed is,

vmax=Aω

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find vmax .

vmax=(0.262m)(3.13rad/s)=0.820m/s

Conclusion:

Therefore, the maximum speed of the bob is 0.820m/s .

(b)

To determine

The maximum acceleration of the bob.

(b)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum acceleration of the bob is 2.57rad/s2 .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum acceleration of the bob is,

amax=Aω2

Substitute 0.262m for A and 3.13rad/s for ω in above equation to find amax .

amax=(0.262 m)(3.13rad/s)2=2.57rad/s2

Conclusion:

Therefore, the maximum acceleration of the bob is 2.57rad/s2 .

(c)

To determine

The maximum restoring force of the bob.

(c)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum restoring force of the bob is 0.641N .

Explanation of Solution

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula to calculate maximum restoring force of the bob is,

F=mamax

  • m is the mass of the pendulum.

Substitute Aω2 for amax in above equation.

F=mAω2

Substitute 0.250kg for m , 0.262 m for A and 3.13rad/s for ω in above equation to find F .

F=(0.250kg)(0.262m)(3.13rad/s)2=0.641N

Conclusion:

Therefore, the maximum restoring force of the bob is 0.641N .

(d)

To determine

The maximum speed, angular acceleration and restoring force of the bob using the model introduced earlier chapter.

(d)

Expert Solution
Check Mark

Answer to Problem 35P

The maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

Explanation of Solution

Section 1:

To determine: The maximum speed of the bob.

Answer: The maximum speed of the bob is 0.817m/s .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

Consider the figure given below.

Principles of Physics: A Calculus-Based Text, Chapter 12, Problem 35P

In triangle ABC ,

cosθ=ACABAC=ABcosθ=Lcosθ

The height of the bob is,

h=ADAC=LLcosθ=L(1cosθ)

The law of conservation of energy is,

mgh=12mvmax2

Substitute L(1cosθ) for h in above expression.

mgL(1cosθ)=12mvmax2gL(1cosθ)=12vmax2

Substitute 15.0° for θ , 1.00m for L and 9.8m/s2 for g in above equation to find vmax .

(9.8m/s2)(1.00m)(1cos(15.0°))=12vmax2vmax2=2(0.333)m2/s2vmax=2(0.333)m2/s2=0.817m/s

Section 2:

To determine: The angular acceleration of the bob.

Answer: The angular acceleration of the bob is 2.54rad/s2 .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The formula for the moment of inertia of the pendulum is,

I=mL2

The equation for the conservation of energy is,

Iα=mgLsinθ

  • α is the angular acceleration.

Substitute mL2 for I in above expression and rearrange for α .

mL2α=mgLsinθα=mgLsinθmL2=gsinθL

Substitute 9.8m/s2 for g , 1.00m for L and 15.0° for θ in above equation to find α .

α=(9.8m/s2)sin(15.0°)1.00m=2.54rad/s2

Section 3:

To determine: The restoring force of the bob.

Answer: The restoring force of the bob is 0.634N .

Given information:

The mass of pendulum is 0.250kg , the length of the pendulum is 1.00m and the displace angle is 15.0° .

The force is maximum, when the angle is maximum.

The restoring force is calculated as,

F=mgsinθ

Substitute 15.0° for θ , 0.250kg for m and 9.8m/s2 for g in above equation to find F .

F=(0.250kg)(9.8m/s2)sin(15.0°)=0.634N

Conclusion:

Therefore, the maximum speed of the bob is 0.817m/s , the angular acceleration of the bob is 2.54rad/s2 and the restoring force of the bob is 0.634N .

(e)

To determine

To compare: The answers of part (a), part (c) and part (d).

(e)

Expert Solution
Check Mark

Explanation of Solution

Introduction: The restoring force is defined as the force or torque that tends to restore a system to equilibrium after displacement.

The answers are closest but not exactly the same. The angular amplitude of 15.0° is not small, so the simple harmonic oscillation is not accurate. The answers computed from conservation of the energy and from Newton’s second law are more accurate.

Conclusion:

Therefore, the answers are closest but not exactly the same.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 12 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 12 - Prob. 5OQCh. 12 - Prob. 6OQCh. 12 - If a simple pendulum oscillates with small...Ch. 12 - Prob. 8OQCh. 12 - Prob. 9OQCh. 12 - Prob. 10OQCh. 12 - Prob. 11OQCh. 12 - Prob. 12OQCh. 12 - Prob. 13OQCh. 12 - You attach a block to the bottom end of a spring...Ch. 12 - Prob. 15OQCh. 12 - Prob. 1CQCh. 12 - The equations listed in Table 2.2 give position as...Ch. 12 - Prob. 3CQCh. 12 - Prob. 4CQCh. 12 - Prob. 5CQCh. 12 - Prob. 6CQCh. 12 - The mechanical energy of an undamped blockspring...Ch. 12 - Prob. 8CQCh. 12 - Prob. 9CQCh. 12 - Prob. 10CQCh. 12 - Prob. 11CQCh. 12 - Prob. 12CQCh. 12 - Consider the simplified single-piston engine in...Ch. 12 - A 0.60-kg block attached to a spring with force...Ch. 12 - When a 4.25-kg object is placed on top of a...Ch. 12 - The position of a particle is given by the...Ch. 12 - You attach an object to the bottom end of a...Ch. 12 - A 7.00-kg object is hung from the bottom end of a...Ch. 12 - Prob. 6PCh. 12 - Prob. 7PCh. 12 - Prob. 8PCh. 12 - Prob. 9PCh. 12 - A 1.00-kg glider attached to a spring with a force...Ch. 12 - Prob. 11PCh. 12 - Prob. 12PCh. 12 - A 500-kg object attached to a spring with a force...Ch. 12 - In an engine, a piston oscillates with simple...Ch. 12 - A vibration sensor, used in testing a washing...Ch. 12 - A blockspring system oscillates with an amplitude...Ch. 12 - A block of unknown mass is attached to a spring...Ch. 12 - Prob. 18PCh. 12 - Prob. 19PCh. 12 - A 200-g block is attached to a horizontal spring...Ch. 12 - A 50.0-g object connected to a spring with a force...Ch. 12 - Prob. 22PCh. 12 - Prob. 23PCh. 12 - Prob. 24PCh. 12 - Prob. 25PCh. 12 - Prob. 26PCh. 12 - Prob. 27PCh. 12 - Prob. 28PCh. 12 - The angular position of a pendulum is represented...Ch. 12 - A small object is attached to the end of a string...Ch. 12 - A very light rigid rod of length 0.500 m extends...Ch. 12 - A particle of mass m slides without friction...Ch. 12 - Review. A simple pendulum is 5.00 m long. What is...Ch. 12 - Prob. 34PCh. 12 - Prob. 35PCh. 12 - Show that the time rate of change of mechanical...Ch. 12 - Prob. 37PCh. 12 - Prob. 38PCh. 12 - Prob. 39PCh. 12 - Prob. 40PCh. 12 - Prob. 41PCh. 12 - Prob. 42PCh. 12 - Prob. 43PCh. 12 - Prob. 44PCh. 12 - Four people, each with a mass of 72.4 kg, are in a...Ch. 12 - Prob. 46PCh. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - Prob. 49PCh. 12 - Prob. 50PCh. 12 - Prob. 51PCh. 12 - Prob. 52PCh. 12 - Prob. 53PCh. 12 - Prob. 54PCh. 12 - Prob. 55PCh. 12 - A block of mass m is connected to two springs of...Ch. 12 - Review. One end of a light spring with force...Ch. 12 - Prob. 58PCh. 12 - A small ball of mass M is attached to the end of a...Ch. 12 - Prob. 60PCh. 12 - Prob. 61PCh. 12 - Prob. 62PCh. 12 - Prob. 63PCh. 12 - A smaller disk of radius r and mass m is attached...Ch. 12 - A pendulum of length L and mass M has a spring of...Ch. 12 - Consider the damped oscillator illustrated in...Ch. 12 - An object of mass m1 = 9.00 kg is in equilibrium...Ch. 12 - Prob. 68PCh. 12 - A block of mass M is connected to a spring of mass...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning