Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12, Problem 13RE
To determine
The formal series solution of the given problem.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1
dx.
Compute
V5
V2
2
O V5
2
O 2/5 – 2/2
O V5 + v2
O V5 – V2
-
2
2]
5. Let u =
[4]
and v=
[2]
find a and b such that au+bv
=
0
[8]
Solve the following P.D.E. , with the
following conditions: u(0,y) = 0, u(L,y) =
0, u(x,0) = 0 and u(x,m) = x2
P.D.E
a'u
0:
ax?
a y
||
Chapter 12 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...
Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 116 use separation of variables to...Ch. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 18ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 20ECh. 12.1 - In Problems 1726 classify the given partial...Ch. 12.1 - Prob. 22ECh. 12.1 - Prob. 23ECh. 12.1 - Prob. 24ECh. 12.1 - Prob. 25ECh. 12.1 - Prob. 26ECh. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - In Problems 27 and 28 show that the given partial...Ch. 12.1 - Verify that each of the products u = XY in (3),...Ch. 12.1 - Prob. 30ECh. 12.1 - Prob. 31ECh. 12.1 - Prob. 32ECh. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 16 a rod of length L coincides with...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - In Problems 710 a string of length L coincides...Ch. 12.2 - Prob. 10ECh. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.2 - In Problems 11 and 12 set up the boundary-value...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.3 - Find the temperature u(x, t) in a rod of length L...Ch. 12.3 - Solve Problem 3 if L = 2 and f(x)={x,0x10,1x2.Ch. 12.3 - Suppose heat is lost from the lateral surface of a...Ch. 12.3 - Solve Problem 5 if the ends x = 0 and x = L are...Ch. 12.3 - A thin wire coinciding with the x-axis on the...Ch. 12.3 - Find the temperature u(x, t) for the...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 16 solve the wave equation (1) subject...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - In Problems 710 a string is tied to the x-axis at...Ch. 12.4 - Prob. 11ECh. 12.4 - A model for the motion of a vibrating string whose...Ch. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - The transverse displacement u(x, t) of a vibrating...Ch. 12.4 - Prob. 19ECh. 12.4 - The vertical displacement u(x, t) of an infinitely...Ch. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - In Problems 1–10 solve Laplace’s equation (1) for...Ch. 12.5 - In Problems 110 solve Laplaces equation (1) for a...Ch. 12.5 - Prob. 10ECh. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - In Problems 11 and 12 solve Laplaces equation (1)...Ch. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - In Problems 15 and 16 use the superposition...Ch. 12.5 - Prob. 18ECh. 12.5 - Solve the Neumann problem for a rectangle:...Ch. 12.5 - Prob. 20ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 3ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - In Problems 1-12 proceed as in Example 1 to solve...Ch. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-16 proceed as in Example 2 to solve...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.7 - In Example 1 find the temperature u(x, t) when the...Ch. 12.7 - Prob. 2ECh. 12.7 - Find the steady-state temperature for a...Ch. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 7ECh. 12.7 - Prob. 8ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.8 - In Problems 1 and 2 solve the heat equation (1)...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - In Problems 3 and 4 solve the wave equation (2)...Ch. 12.8 - Prob. 5ECh. 12.8 - Prob. 6ECh. 12 - Use separation of variables to find product...Ch. 12 - Use separation of variables to find product...Ch. 12 - Find a steady-state solution (x) of the...Ch. 12 - Give a physical interpretation for the boundary...Ch. 12 - At t = 0 a string of unit length is stretched on...Ch. 12 - Prob. 6RECh. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Find the steady-state temperature u(x, y) in the...Ch. 12 - Prob. 9RECh. 12 - Find the temperature u(x, t) in the infinite plate...Ch. 12 - Prob. 11RECh. 12 - Solve the boundary-value problem 2ux2+sinx=ut, 0 ...Ch. 12 - Prob. 13RECh. 12 - The concentration c(x, t) of a substance that both...Ch. 12 - Prob. 15RECh. 12 - Solve Laplaces equation for a rectangular plate...Ch. 12 - Prob. 17RECh. 12 - Prob. 18RECh. 12 - Prob. 19RECh. 12 - If the four edges of the rectangular plate in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- .If a v x = b v x and a v x' = b v x', then prove that a = b.arrow_forwardBookmarks Window Help uzem.altinbas.edu.tr 11 DISCRETE MATHEMATICS SB:1 Find a counterexample of vxvy(xy > y), where the domain for all variables consists of all integers. O a. x = -1, y = 17 O b. x = -2y = 8 O c. Both x = -1, y = 17 and x = -2y = 8 Od. Does not have any counter examplearrow_forwardLet r = xi + yj + zk and r = |rl. If F = find div(F). (Enter your answer in terms of r and p.) p' div(F) = Is there a value of p for which div(F) = 0? (If an answer does not exist, enter DNE.) P =arrow_forward
- 4. Let u be a root of ƒ = t³ − t² + t + 2 € Q[t] and K = Q(u). (a) Show that f = mo(u). (b) Express (u²+u+1) (u²-u) and (u-1)-¹ in the form au²+bu+c, for some a, b, c € Q.arrow_forward[x + 1 0 2 1 2 0 and B (3)if A = 3 1 3 y -5 4 -1 -5 4 z - 4] Find x,у аnd z.arrow_forwardfly) = 3{Vv +Vy - 2Vy *FV) = Ny-6Vỹ + 8Vy 12y a. f\V) = = %3D F(V) = Vv - 6VV- 8/y 12y Ob. f'(y) = 9Vy +6Vy- 8/v 12y c. d. f'(v) = %3D 12yarrow_forward
- 12.arrow_forward4. (a) Prove, without recourse to geometry, that u. (V x W) = v. (w xu) = w (u xv) = -u. (w x V) = −w. (V x u) = -v. (u x W).arrow_forwardLet A = 1 6 0 3 5 0 4 36 3 6 0624 7 12 15 " b= 4 9 k (a) Find condition on k E R such that Ax = b, x € R” is solvable. (b) Find all solutions when condition in a) holds.arrow_forward
- 1. Solve for x and y in xy + 8 + j(x²y + y) = 4x + 4 + j(xy² + x) A. 2, 2, B. 2,3 C. 3, 2 2. Determine the principal value of (3 + j4)¹ +² +j2 A. 0.42+j0.56 C. -0.42-j0.66, B. 0.42+j0.66 D. 0.42-j0.66 3. Using the properties of complex numbers. determine the two square roots of 3-j2 A. +1.82+j0.55, C. 1.82 + j0.55 B. +1.82±j0.55 D. +1.82 + j0.55 4. Evaluate: BE CALC 3-14 3+14 + 3+j4 3-j4 A. 2.44 +j4/ B. 2.44-j4 C. -2.44 + j4 D. 2.44 +j5 Evaluate log; (3 + j4). A. 0.6+j1.02 C. -0.6-j1.02 B. -0.6+j1.02 D. 0.6-j1.02, 6. The following three vectors are given; A = 20 +j20, B = 30/120° and C= 10+ j0, find AB/C C. 95/-50° B. 85-75% A. 70/45° D. 75/70" 7. If 100+5x/45° = 200/-e. Find x and 8. A. 24. 23.28 B. 23.28. 32.3° C. 23.28. 24.3% D. 23, 42.8° 8. Determine the principal value of cosh' (j0.5). A. In (1+j5) C. In j5 B. In (1± √5), D. In j(1 + √5) 2 5 1 = 9. In A-2B-C=0. if A= 2B-C-0. if A- and B-₁ find C |² -1 3 2 3 8 -3 8 3 91 C. A. 3 0 0 -3 -8 -8 -3 3 D. B. | 3 0 -3 10. Solve for a and b…arrow_forwardLet 1 ≤ i ≤n and let ₁,...Vi-1, Vi+1,.. (a) Show that T: R" → R where T(7) = det [7₁ is linear. V₁ (b) Show that T: R" → R where T(x) = det ,..., Un € Rn. Vi-1 Vi+1 Pi+1' is linear.arrow_forwardQ10arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY