CHEMISTRY-TEXT
CHEMISTRY-TEXT
8th Edition
ISBN: 9780134856230
Author: Robinson
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 12, Problem 12.141MP
Interpretation Introduction

(a)

Interpretation:

The value of x in the formula FexO is to be determined.

Concept introduction:

The density of the crystal is defined as the mass of the crystal divided by the volume of the crystal.

The formula to calculate the density of the crystal is as follows:

d=ZMNAa3

Where,

  • d is the density of the crystal.
  • Z is the number of atoms in the crystal.
  • M is the atomic mass.
  • a is the edge length of the crystal.
  • NA is the Avogadro’s number.

Interpretation Introduction

(b)

Interpretation:

The average oxidation state of Fe is to be determined.

Concept introduction:

The positive or negative number that is used to denote the net charge on any atom or element is called oxidation state.

Interpretation Introduction

(c)

Interpretation:

The percent of Fe atoms in +3 oxidation state is to be determined.

Concept introduction:

The positive or negative number that is used to denote the net charge on any atom or element is called oxidation state.

d)

Interpretation Introduction

Interpretation:

The angle for the third-order diffraction is to be determined.

Concept introduction:

Electrons have properties of matter as well as waves. These can undergo diffraction by the crystals.

The Bragg equation is as follows:

=2dsinθ

Where,

  • n is the order of diffraction.
  • λ is the wavelength of electrons.
  • d is the spacing of the crystal planes.
  • θ is the angle of incidence.

Interpretation Introduction

(e)

Interpretation:

Whether wustite is a n -type or a p -type semiconductor should be determined.

Concept introduction:

Semiconductors are the substances or materials that have conductivity in between that of conductors and insulators. The n -type or a p -type semiconductors are formed by the process of doping or addition of impurities in the normal pure crystal. If the impurity added or the doped material is a trivalent atom, p -type semiconductors are formed. In this type of semiconductor, holes are the majority charge carriers. But if the added impurity is a pentavalent atom, n -type semiconductors are produced. In this type of semiconductor, electrons are the majority charge carriers.

Blurred answer
Students have asked these similar questions
Some oxide superconductors adopt a crystal structure similar to that of perovskite (CaTiO3). The unit cell is cubic with a Ti4+ ion in each corner, a Ca2+ ion in the body center, and O2- ions at the midpoint of each edge. (a) Is this unit cell simple, body-centered, or face-centered? (b) If the unit cell edge length is 3.84 Å, what is the density of perovskite (in g/cm3)?
(a) Pure iron has a change in crystal structure from BCC to FCC when heating up above 912°C. If the atomic radius of an Fe atom is 0.124 nm, calculate the volumes of the FCC and BCC unit cells. (b)Recall that there are two atoms per BCC unit cell, and four atoms per FCC unit cell. With this information in mind, calculate the percent change in volume of a sample of pure Fe as it transforms from an FCC to a BCC structure upon cooling below 912°C. Specify if this percent change manifests as an increase or decrease in volume of the sample.
(b) Many structures of ionic compounds have been described in terms of close packing of a large anion, X, with a cation, A, occupying tetrahedral or octahedral holes. (1) In a cubic close packed lattice, how many octahedral holes are there per lattice ion? (ii) What is the formula of a compound based upon a cubic close packed lattice in which of the octahedral holes are filled? (ii) State the coordination numbers and geometries of A and X In the crystal lattice in part (b)(ii) above.

Chapter 12 Solutions

CHEMISTRY-TEXT

Ch. 12 - Prob. 12.11PCh. 12 - Prob. 12.12ACh. 12 - Prob. 12.13PCh. 12 - Prob. 12.14PCh. 12 - Prob. 12.15PCh. 12 - Prob. 12.16PCh. 12 - Prob. 12.17PCh. 12 - Identify each of the following kinds of packingCh. 12 - Prob. 12.19CPCh. 12 - Titanium oxide crystallizes in the following cubic...Ch. 12 - Prob. 12.21CPCh. 12 - Prob. 12.22CPCh. 12 - Prob. 12.23CPCh. 12 - Prob. 12.24CPCh. 12 - Prob. 12.25CPCh. 12 - Prob. 12.26SPCh. 12 - Prob. 12.27SPCh. 12 - Prob. 12.28SPCh. 12 - Prob. 12.29SPCh. 12 - Prob. 12.30SPCh. 12 - Prob. 12.31SPCh. 12 - Diffraction of X rays with =154.2 pm at an angle...Ch. 12 - Diffraction of X rays with =154.2 pm at an angle...Ch. 12 - Which of the four kinds of packing used by metals...Ch. 12 - What is a unit cell? How many atoms are in one...Ch. 12 - Copper crystallizes in a face-centered cubic unit...Ch. 12 - Lead crystallizes in a cubic unit cell with anedge...Ch. 12 - Prob. 12.38SPCh. 12 - Tungsten crystallizes in a body-centered cubic...Ch. 12 - Prob. 12.40SPCh. 12 - Prob. 12.41SPCh. 12 - Titanium metal has a density of and an atomic...Ch. 12 - Calcium metal has a density of 1.55 g/cm3 and...Ch. 12 - The atomic radius of Pb is 175 pm, and the density...Ch. 12 - The density of a sample of metal was measured to...Ch. 12 - If a protein can be induced to crystallize, its...Ch. 12 - The molecular structure of a scorpion toxin, a...Ch. 12 - Iron crystallizes in a body-centered cubic unit...Ch. 12 - Silver metal crystallizes in a face-centered cubic...Ch. 12 - Sodium hydride, NaH, crystallizes in a...Ch. 12 - Cesium chloride crystallizers in a cubic unit cell...Ch. 12 - If the edge length of an NaH unit cell is 488 pm,...Ch. 12 - The edge length of a CsCI unit cell (Problem...Ch. 12 - Silicon carbide, SiC, is a covalent network solid...Ch. 12 - Prob. 12.55SPCh. 12 - Prob. 12.56SPCh. 12 - Prob. 12.57SPCh. 12 - Prob. 12.58SPCh. 12 - Prob. 12.59SPCh. 12 - Prob. 12.60SPCh. 12 - Prob. 12.61SPCh. 12 - Prob. 12.62SPCh. 12 - Prob. 12.63SPCh. 12 - Prob. 12.64SPCh. 12 - Prob. 12.65SPCh. 12 - Prob. 12.66SPCh. 12 - Prob. 12.67SPCh. 12 - Prob. 12.68SPCh. 12 - Prob. 12.69SPCh. 12 - Prob. 12.70SPCh. 12 - Prob. 12.71SPCh. 12 - Prob. 12.72SPCh. 12 - Prob. 12.73SPCh. 12 - Prob. 12.74SPCh. 12 - Prob. 12.75SPCh. 12 - Prob. 12.76SPCh. 12 - Prob. 12.77SPCh. 12 - Prob. 12.78SPCh. 12 - Prob. 12.79SPCh. 12 - Prob. 12.80SPCh. 12 - Prob. 12.81SPCh. 12 - Prob. 12.82SPCh. 12 - Prob. 12.83SPCh. 12 - Prob. 12.84SPCh. 12 - Prob. 12.85SPCh. 12 - Prob. 12.86SPCh. 12 - Prob. 12.87SPCh. 12 - Prob. 12.88SPCh. 12 - Prob. 12.89SPCh. 12 - Prob. 12.90SPCh. 12 - Prob. 12.91SPCh. 12 - Prob. 12.92SPCh. 12 - Prob. 12.93SPCh. 12 - Prob. 12.94SPCh. 12 - Prob. 12.95SPCh. 12 - Prob. 12.96SPCh. 12 - Prob. 12.97SPCh. 12 - Prob. 12.98SPCh. 12 - Prob. 12.99SPCh. 12 - Prob. 12.100SPCh. 12 - Prob. 12.101SPCh. 12 - A photovoltaic cell contains a p-n junction that...Ch. 12 - Prob. 12.103SPCh. 12 - Prob. 12.104SPCh. 12 - Prob. 12.105SPCh. 12 - Prob. 12.106SPCh. 12 - Prob. 12.107SPCh. 12 - Prob. 12.108SPCh. 12 - Prob. 12.109SPCh. 12 - Prob. 12.110SPCh. 12 - Prob. 12.111SPCh. 12 - Prob. 12.112SPCh. 12 - Prob. 12.113SPCh. 12 - Prob. 12.114SPCh. 12 - Prob. 12.115SPCh. 12 - Prob. 12.116SPCh. 12 - Prob. 12.117SPCh. 12 - Prob. 12.118SPCh. 12 - Prob. 12.119SPCh. 12 - Prob. 12.120SPCh. 12 - Prob. 12.121SPCh. 12 - Prob. 12.122SPCh. 12 - Prob. 12.123SPCh. 12 - Prob. 12.124SPCh. 12 - Prob. 12.125SPCh. 12 - Prob. 12.126SPCh. 12 - Prob. 12.127SPCh. 12 - Prob. 12.128SPCh. 12 - Prob. 12.129SPCh. 12 - Prob. 12.130SPCh. 12 - Prob. 12.131SPCh. 12 - Prob. 12.132SPCh. 12 - Prob. 12.133SPCh. 12 - Prob. 12.134MPCh. 12 - Prob. 12.135MPCh. 12 - Prob. 12.136MPCh. 12 - Prob. 12.137MPCh. 12 - Assume that 1588 g of an alkali metal undergoes...Ch. 12 - Prob. 12.139MPCh. 12 - Prob. 12.140MPCh. 12 - Prob. 12.141MPCh. 12 - Prob. 12.142MPCh. 12 - Prob. 12.143MPCh. 12 - Prob. 12.144MP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning