EBK THERMODYNAMICS: AN ENGINEERING APPR
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 11.10, Problem 67P

How do we achieve very low temperatures with gas refrigeration cycles?

Blurred answer
Students have asked these similar questions
What are the four processes that make up the simple ideal vapor compression refrigeration (VCR) cycle? Make sure you mention what is physically happening during each process   Themodynamics question. please explain briefly.Thank you
5. A refrigerator with tetrafluoroethane as refrigerant operates with an evaporation temperature of 247.15 K (-26°C) and a condensation temperature of 300.15 K (27°C). Saturated liquid refrigerant from the condenser flows through an expansion valve into the evaporator, from which it emerges as saturated vapor. (a) For a cooling rate of 5.275 kW, what is the circulation rate of the refrigerant? (b) By how much would the circulation rate be reduced if the throttle valve were replaced by a turbine in which the refrigerant expands isentropically? (c) Suppose the cycle of (a) is modified by the inclusion of a countercurrent heat exchanger between the condenser and the throttle valve in which heat is transferred to vapor returning from the evaporator. If liquid from the condenser enters the exchanger at 300.15 K (27°C) and if vapor from the evaporator enters the exchanger at 247.15 K (-26°C) and leaves at 294.15 K (21°C), what is the circulation rate of the refrigerant?
1. A 10-kW cooling load is to be served by operating an ideal vapor-compression refrigeration cycle with its evaporator at 400 kPa and its condenser at 800 kPa. If the compressor's isentropic efficiency is 68%, calculate the refrigerant mass flow rate and the compressor power requirement when refrigerant-134a is used.

Chapter 11 Solutions

EBK THERMODYNAMICS: AN ENGINEERING APPR

Ch. 11.10 - An ice-making machine operates on the ideal...Ch. 11.10 - A 10-kW cooling load is to be served by operating...Ch. 11.10 - 11–13 An ideal vapor-compression refrigeration...Ch. 11.10 - 11–14 Consider a 300 kJ/min refrigeration system...Ch. 11.10 - 11–16 Repeat Prob. 11–14 assuming an isentropic...Ch. 11.10 - 11–17 Refrigerant-134a enters the compressor of a...Ch. 11.10 - A commercial refrigerator with refrigerant-134a as...Ch. 11.10 - 11–19 Refrigcrant-134a enters the compressor of a...Ch. 11.10 - A refrigerator uses refrigerant-134a as the...Ch. 11.10 - The manufacturer of an air conditioner claims a...Ch. 11.10 - Prob. 23PCh. 11.10 - How is the second-law efficiency of a refrigerator...Ch. 11.10 - Prob. 25PCh. 11.10 - Prob. 26PCh. 11.10 - Prob. 27PCh. 11.10 - 11–28 Bananas are to be cooled from 28°C to 12°C...Ch. 11.10 - A vapor-compression refrigeration system absorbs...Ch. 11.10 - A refrigerator operating on the vapor-compression...Ch. 11.10 - A room is kept at 5C by a vapor-compression...Ch. 11.10 - Prob. 32PCh. 11.10 - 11–33 A refrigeration system operates on the ideal...Ch. 11.10 - When selecting a refrigerant for a certain...Ch. 11.10 - Consider a refrigeration system using...Ch. 11.10 - A refrigerant-134a refrigerator is to maintain the...Ch. 11.10 - A refrigerator that operates on the ideal...Ch. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - Do you think a heat pump system will be more...Ch. 11.10 - What is a water-source heat pump? How does the COP...Ch. 11.10 - Prob. 42PCh. 11.10 - Refrigerant-134a enters the condenser of a...Ch. 11.10 - Prob. 45PCh. 11.10 - A heat pump using refrigerant-134a heats a house...Ch. 11.10 - How does the COP of a cascade refrigeration system...Ch. 11.10 - A certain application requires maintaining the...Ch. 11.10 - Consider a two-stage cascade refrigeration cycle...Ch. 11.10 - Can a vapor-compression refrigeration system with...Ch. 11.10 - Prob. 52PCh. 11.10 - Prob. 53PCh. 11.10 - Repeat Prob. 1156 for a flash chamber pressure of...Ch. 11.10 - Prob. 56PCh. 11.10 - Prob. 57PCh. 11.10 - 11–58 Consider a two-stage cascade refrigeration...Ch. 11.10 - Prob. 59PCh. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Repeat Prob. 1163E if the 30 psia evaporator is to...Ch. 11.10 - How does the ideal gas refrigeration cycle differ...Ch. 11.10 - Devise a refrigeration cycle that works on the...Ch. 11.10 - How is the ideal gas refrigeration cycle modified...Ch. 11.10 - Prob. 66PCh. 11.10 - How do we achieve very low temperatures with gas...Ch. 11.10 - 11–68E Air enters the compressor of an ideal gas...Ch. 11.10 - Prob. 69PCh. 11.10 - Air enters the compressor of an ideal gas...Ch. 11.10 - Repeat Prob. 1173 for a compressor isentropic...Ch. 11.10 - Prob. 73PCh. 11.10 - Prob. 74PCh. 11.10 - Prob. 75PCh. 11.10 - A gas refrigeration system using air as the...Ch. 11.10 - An ideal gas refrigeration system with two stages...Ch. 11.10 - Prob. 78PCh. 11.10 - Prob. 79PCh. 11.10 - What are the advantages and disadvantages of...Ch. 11.10 - Prob. 81PCh. 11.10 - Prob. 82PCh. 11.10 - An absorption refrigeration system that receives...Ch. 11.10 - An absorption refrigeration system receives heat...Ch. 11.10 - Heat is supplied to an absorption refrigeration...Ch. 11.10 - Prob. 86PCh. 11.10 - Prob. 87PCh. 11.10 - Prob. 88PCh. 11.10 - Prob. 89PCh. 11.10 - Consider a circular copper wire formed by...Ch. 11.10 - An iron wire and a constantan wire are formed into...Ch. 11.10 - Prob. 92PCh. 11.10 - Prob. 93PCh. 11.10 - Prob. 94PCh. 11.10 - Prob. 95PCh. 11.10 - Prob. 96PCh. 11.10 - Prob. 97PCh. 11.10 - Prob. 98PCh. 11.10 - A thermoelectric cooler has a COP of 0.18, and the...Ch. 11.10 - Prob. 100PCh. 11.10 - Prob. 101PCh. 11.10 - Prob. 102PCh. 11.10 - Prob. 103RPCh. 11.10 - Prob. 104RPCh. 11.10 - Prob. 105RPCh. 11.10 - A heat pump that operates on the ideal...Ch. 11.10 - A large refrigeration plant is to be maintained at...Ch. 11.10 - Repeat Prob. 11112 assuming the compressor has an...Ch. 11.10 - A heat pump operates on the ideal...Ch. 11.10 - An air conditioner with refrigerant-134a as the...Ch. 11.10 - An air conditioner operates on the...Ch. 11.10 - Consider a two-stage compression refrigeration...Ch. 11.10 - A two-evaporator compression refrigeration system...Ch. 11.10 - Prob. 116RPCh. 11.10 - Prob. 117RPCh. 11.10 - Prob. 118RPCh. 11.10 - Consider a regenerative gas refrigeration cycle...Ch. 11.10 - Prob. 120RPCh. 11.10 - The refrigeration system of Fig. P11122 is another...Ch. 11.10 - Repeat Prob. 11122 if the heat exchanger provides...Ch. 11.10 - An ideal gas refrigeration system with three...Ch. 11.10 - Derive a relation for the COP of the two-stage...Ch. 11.10 - Prob. 129FEPCh. 11.10 - Prob. 130FEPCh. 11.10 - Prob. 131FEPCh. 11.10 - Prob. 132FEPCh. 11.10 - An ideal vapor-compression refrigeration cycle...Ch. 11.10 - Prob. 134FEPCh. 11.10 - An ideal gas refrigeration cycle using air as the...Ch. 11.10 - Prob. 136FEPCh. 11.10 - Prob. 137FEPCh. 11.10 - Prob. 138FEP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY