(a)
The
(a)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
(b)
The nuclear equation for the alpha emission decay reaction for
(b)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
(c)
The nuclear equation for the alpha emission decay reaction for
(c)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
(d)
The nuclear equation for the alpha emission decay reaction for
(d)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
(e)
The nuclear equation for the alpha emission decay reaction for
(e)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
(f)
The nuclear equation for the alpha emission decay reaction for
(f)
Answer to Problem 5PEA
The nuclear equation for the alpha emission decay for
Explanation of Solution
The nuclear equation for the alpha emission decay reaction for the given element is given as,
Here,
Thus the nuclear equation for the alpha emission decay reaction of
Want to see more full solutions like this?
Chapter 11 Solutions
Integrated Science
- (a) Calculate BE/A for 235U, the rarer of the two most common uranium isotopes. (b) Calculate BE/A for 238U. (Most of uranium is 238U.) Note that 238U has even numbers at both protons and neutrons. Is the BE/A of 238U significantly different from that of 235U?arrow_forward(a) Calculate the number of grams of deuterium in an 80.000L swimming pool, given deuterium is 0.0150% of natural hydrogen. (b) Find the energy released in joules if this deuterium is fused via the reaction 2H+2H3He+n. (c) Could the neutrons be used to create more energy? (d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.arrow_forward(a) Calculate the energy released in the a decay of 238U. (b) What fraction of the mass at a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is laws for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forward
- (a) Calculate the energy released in the a decay of 238U . (b) What fraction of the mass of a single 238U is destroyed in the decay? The mass of 234Th is 234.043593 u. (c) Although the fractional mass loss is large for a single nucleus, it is difficult to observe for an entire macroscopic sample of uranium. Why is this?arrow_forwardThe ceramic glaze on a red-orange “Fiestaware” plate is U2O3and contains 50.0 grams of 238U, but very little 235U. (a) What is the activity of the plate? (b) Calculate the total energy that will be released by the 238U decay, (c) If energy is worth 12.0 cents per kWh , what is the monetary value of the energy emitted? (These brightly- colored ceramic plates went out of production some 30 years ago, but are still available as collectibles.)arrow_forwardSuppose you have a pure radioactive material with a half-life of T1/2. You begin with N0 undecayed nuclei of the material at t = 0. At t=12T1/2, how many of the nuclei have decayed? (a) 14N0 (b) 12N0(C) 34N0 (d) 0.707N0 (e) 0.293N0arrow_forward
- (a) Write the decay equation for the decay of 235U. (b) What energy is released in this decay? The mass of the daughter nuclide is 231.036298 u. (c) Assuming the residual nucleus is formed in its ground state, how much energy goes to the particle?arrow_forwardUnreasonable Results The relatively scarce naturally occurring calcium isotope 48Ca has a halflife at about 21016y. (a) A small sample of this isotope is labeled as having an activity of 1.0 Ci. What is the mass of the 48Ca in the sample? (b) What is unreasonable about this result? (c) What assumption is responsible?arrow_forwardData from the appendices and the periodic table may be needed for these problems. Unreasonable Results (a) Repeat Exercise 31.57 but include the 0.0055% natural abundance of 234U with its 2.45105y halflife. (b) What is unreasonable about this result? (c) What assumption is responsible? (d) Where does the 234U come from if it is not primordial?arrow_forward
- Why is the number of neutrons greater than the number of protons in stable nuclei that have an A greater than about 40? Why is this effect more pronounced for the heaviest nuclei?arrow_forward(a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardData from the appendices and the periodic table may be needed for these problems. Natural uranium is 0.7200% 235U and 99.27% 238U. What were the percentages of 235U and 238U in natural uranium when Earth formed 4.5109 years age?arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning