Concept explainers
A student on a piano stool rotates freely with an angular speed of 2 95 rev/s The student holds a 1.25-kg mass in each outstretched arm 0.759 m from the axis of rotation The combined moment of inertia of the student and the stool, ignoring the two masses is 5.43 kg · m2. a value that remains constant (a) As the student pulls his arms inward, his angular speed increases to 3.54 rev/s How far are the masses from the axis of rotation at this time considering the masses to be points? (b) Calculate the initial and final kinetic energies of the system
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
Physics (5th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology (7th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Introductory Chemistry (6th Edition)
Chemistry: Structure and Properties (2nd Edition)
Anatomy & Physiology (6th Edition)
Organic Chemistry (8th Edition)
- A student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardA playground merry-go-round of radius R = 2.00 m has a moment of inertia I = 250 kg m2 and is rotating at 10.0 rev/min about a frictionless, vertical axle. Facing the axle, a 25.0-kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round?arrow_forwardAs a compact disc (CD) spins clockwise as seen from above,information is read from it, starting with the innermost ring andmoving outward. When the information is being read from theinnermost ring, the CDs angular speed is 0 = 52.4 rad /s. TheCD slows down so that when information is read from the outermost ring, = 20.9 rad /s. It takes 74 min 33 s to read themusic from a particular CD. Find the constant angular acceleration of the CD.arrow_forward
- During a certain time interval, the angular position of a swinging door is described by = 5.00 + 10.0t + 2.00t2, where is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door (a) at t = 0 and (b) at t = 3.00 s.arrow_forwardThe propeller of an aircraft accelerates from rest with an angular acceleration = 4t + 6, where is in rad/s2 and t isin seconds. What is the angle in radians through which thepropeller rotates from t = 1.00 s to t = 6.00 s?arrow_forwardThe tub of a washer goes into its spin cycle, starting from rest and gaining angular speed steadily for 8.00 s, at which time it is turning at 5.00 rev/s. At this point, the person doing the laundry opens the lid, and a safety switch turns off the washer. The tub smoothly slows to rest in 12.0 s. Through how many revolutions does the tub turn while it is in motion?arrow_forward
- Calculate the moment of inertia of a skater given the following information. (a) The 60.0-kg skater is approximated as a cylinder that has a 0.110-m radius. b) The skater with arms extended is approximated by a cylinder that is 52.5 kg, has a 0.110-m radius, and has two 0.900-m-long arms which are 3.75 kg each and extend straight out from the cylinder like rods rotated about their ends.arrow_forwardA carnival carousel accelerates nonuniformly from rest, moving through an angle of 8.60 rad in 6.00 s. If its turning at 3.30 rad/s at that time, find (a) its average angular speed, and (b) average angular acceleration during that time interval. (See Section 7.1.)arrow_forwardConsider an object on a rotating disk a distance r from its center, held in place on the disk by static friction. Which of the following statements is not true concerning this object? (a) If the angular speed is constant, the object must have constant tangential speed. (b) If the angular speed is constant, the object is not accelerated. (c) The object has a tangential acceleration only if the disk has an angular acceleration. (d) If the disk has an angular acceleration, the object has both a centripetal acceleration and a tangential acceleration. (e) The object always has a centripetal acceleration except when the angular speed is zero.arrow_forward
- A disk with moment of inertia I1 rotates about a frictionless, vertical axle with angular speed i. A second disk, this one having moment of inertia I2 and initially not rotating, drops onto the first disk (Fig. P10.50). Because of friction between the surfaces, the two eventually reach the same angular speed f. (a) Calculate f. (b) Calculate the ratio of the final to the initial rotational energy. Figure P10.50arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forwardA thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College