Inquiry into Physics
Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 18Q
To determine

To Explain:How half-life of radioactive isotope plutonium 238 effects the lifetime of spacecraft.

Blurred answer
Students have asked these similar questions
Radioactive isotope Lawrencium-266 has a half-life of 11 days. Suppose a sample of this substance has a mass of 240g. (a) Find a function m(t)=m,e that models the mass remaining after t days. (Round r to 3 decimal places.) (b) Find the mass remaining after three weeks. (c) How long will it take for the sample to decay to a mass of 30 g? (Round t to the nearest day.)
An unknown radioactive element decays into non-radioactive substances. In 360 days the radioactivity of a sample decreases by 34 percent. (a) Find the decay constant k. (Round your answer to 5 decimal places.) (b) What is the half-life of the element? (Round your answer to two decimal places) half-life: (days) (c) How long will it take for a sample of 100 mg to decay to 59 mg? (Round your answer to two decimal places) time needed: (days)
This exercise uses the radioactive decay model. The half-life of radium-226 is 1600 years. Suppose we have a 29-mg sample. (a) Find a function m(t) = mo2-t/h that models the mass remaining after t years. m(t) 1600 29 2 (b) Find a function m(t) = moe-rt that models the mass remaining after t years. (Round your r value to six decimal places m(t) = %3D (c) How much of the sample will remain after 5000 years? (Round your answer to one decimal place.) 1 mg (d) After how many years will only 17 mg of the sample remain? (Round your answer to one decimal place.) X yr
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Inquiry into Physics
    Physics
    ISBN:9781337515863
    Author:Ostdiek
    Publisher:Cengage
    Text book image
    College Physics
    Physics
    ISBN:9781285737027
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning