Chemistry: Principles and Practice
Chemistry: Principles and Practice
3rd Edition
ISBN: 9780534420123
Author: Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 11, Problem 11.55QE

(a)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Intermolecular forces:  Intermolecular forces are electrostatic in nature and include van der Waals forces and hydrogen bonds.  Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.  The three major types of intermolecular interactions are,

  • Dipole-dipole interactions
  • London dispersion forces
  • Hydrogen bonds

(a)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for propane (C3H8).

Explanation of Solution

Both propane (C3H8) and methane (CH4) have their intermolecular forces as London dispersion force.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of propane is said to be greater because of its increase in molar mass.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of propane is expected to be greater than methane.

(b)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Refer to part (a).

(b)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for iodine (I2).

Explanation of Solution

Iodine has London dispersion force and ICl has their intermolecular forces as dipole-dipole attractions.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of iodine is said to be greater because of its increase in molar mass.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of iodine would be greater than ICl.

(c)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Refer to part (a).

(c)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for disulphide dichloride (S2Cl2).

Explanation of Solution

Both disulphide difluoride (S2F2) and disulphide dichloride (S2Cl2) have their intermolecular forces as London dispersion force.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of disulphide dichloride (S2Cl2) is said to be greater because of its increase in molar mass.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of disulphide dichloride (S2Cl2) would be greater than disulphide difluoride (S2F2).

(d)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Refer to part (a).

(d)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for water (H2O).

Explanation of Solution

The intermolecular force present in water is hydrogen bonding and the intermolecular force present in H2Se is dipole-dipole attraction.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of water is said to be greater.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of water would be greater than H2Se.

(e)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Refer to part (a).

(e)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for dichloromethane (CH2Cl2).

Explanation of Solution

Both dichloromethane (CH2Cl2) and chloromethane (CH3Cl) have dipole-dipole attractions and London dispersion forces as their intermolecular attractions.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of dichloromethane (CH2Cl2) is said to be greater because of its increase in molar mass.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of dichloromethane (CH2Cl2) would be greater than chloromethane (CH3Cl).

(f)

Interpretation Introduction

Interpretation:

The liquid that is expected to have greater enthalpy of vaporization has to be given.

Concept Introduction:

Refer to part (a).

(f)

Expert Solution
Check Mark

Answer to Problem 11.55QE

The enthalpy of vaporization is expected to be greater for NOCl.

Explanation of Solution

Both NOF and NOCl have dipole –dipole attractions and London dispersion forces as their intermolecular attractions.  The enthalpy of vaporization of liquid depends on its boiling point.  The boiling point of NOCl is said to be greater because of its increase in molar mass.  Stronger the intermolecular force, higher the boiling point, greater will be the enthalpy of vaporization.  Therefore, the enthalpy of vaporization of NOCl would be greater than NOF.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The fragment of H2O phase diagram is shown. What transition (e.g. liquid->solid, solid->gas... or none) would be observed when a sample of H2O initially at 0.003 atm and -5 C is heated at constant pressure to 0 C?
What is the molar heat of vaporation (ΔHvap) in kJ/mol of a liquid that has a vapor pressure of 641 torr at 85.2°C and a boiling point of 95.6°C at 1 atm?
A 337.2 g sample of acetone gas with a temperature of 56.0°C is converted to a liquid with a temperature of 56.0°C. How much heat is involved? Formula: C3H6OMelting Point: -94.0°CBoiling Point: 56.0°CDensity of liquid: 0.791 g/mLHeat of Fusion: 98.14 J/gHeat of vaporization: 538.9 J/gSpecific heat capacity (solid): 1.653 J/g°CSpecific heat capacity (liquid): 2.161 J/g°CSpecific heat capacity (gas): 1.291 J/g°C

Chapter 11 Solutions

Chemistry: Principles and Practice

Ch. 11 - Prob. 11.11QECh. 11 - Prob. 11.12QECh. 11 - Prob. 11.13QECh. 11 - Prob. 11.14QECh. 11 - Prob. 11.15QECh. 11 - Prob. 11.16QECh. 11 - Prob. 11.17QECh. 11 - Prob. 11.18QECh. 11 - Prob. 11.19QECh. 11 - Prob. 11.20QECh. 11 - The compounds ethanol (C2H5OH) and dimethyl ether...Ch. 11 - Prob. 11.22QECh. 11 - Prob. 11.23QECh. 11 - An amorphous solid can sometimes be converted to a...Ch. 11 - Prob. 11.25QECh. 11 - Prob. 11.26QECh. 11 - Prob. 11.27QECh. 11 - Prob. 11.28QECh. 11 - Prob. 11.29QECh. 11 - Prob. 11.30QECh. 11 - Prob. 11.31QECh. 11 - Prob. 11.32QECh. 11 - Prob. 11.33QECh. 11 - Prob. 11.34QECh. 11 - Prob. 11.35QECh. 11 - Prob. 11.36QECh. 11 - Prob. 11.37QECh. 11 - Prob. 11.38QECh. 11 - What is the enthalpy change when a 1.00-kg block...Ch. 11 - Prob. 11.40QECh. 11 - Prob. 11.41QECh. 11 - Prob. 11.42QECh. 11 - Prob. 11.43QECh. 11 - Prob. 11.44QECh. 11 - Prob. 11.45QECh. 11 - Prob. 11.46QECh. 11 - Prob. 11.47QECh. 11 - Prob. 11.48QECh. 11 - Identify the kinds of intermolecular forces...Ch. 11 - Prob. 11.50QECh. 11 - Prob. 11.51QECh. 11 - Prob. 11.52QECh. 11 - Prob. 11.53QECh. 11 - Prob. 11.54QECh. 11 - Prob. 11.55QECh. 11 - Prob. 11.56QECh. 11 - Prob. 11.57QECh. 11 - Prob. 11.58QECh. 11 - Prob. 11.59QECh. 11 - Identify the kinds of forces that are most...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Arrange the following substances in order of...Ch. 11 - Prob. 11.63QECh. 11 - Silicon carbide, SiC, is a very hard, high-melting...Ch. 11 - Prob. 11.65QECh. 11 - Calcium oxide consists of a face-centered cubic...Ch. 11 - Prob. 11.67QECh. 11 - Prob. 11.68QECh. 11 - Prob. 11.69QECh. 11 - Prob. 11.70QECh. 11 - Prob. 11.71QECh. 11 - Prob. 11.72QECh. 11 - Prob. 11.73QECh. 11 - Prob. 11.74QECh. 11 - Lithium hydride (LiH) has the sodium chloride...Ch. 11 - Cesium iodide crystallizes as a simple cubic array...Ch. 11 - Palladium has a cubic crystal structure in which...Ch. 11 - Prob. 11.78QECh. 11 - Prob. 11.79QECh. 11 - Prob. 11.80QECh. 11 - Prob. 11.81QECh. 11 - Prob. 11.82QECh. 11 - Prob. 11.83QECh. 11 - Prob. 11.84QECh. 11 - Prob. 11.85QECh. 11 - The coordination number of uniformly sized spheres...Ch. 11 - Prob. 11.87QECh. 11 - Prob. 11.88QECh. 11 - Prob. 11.89QECh. 11 - Prob. 11.90QECh. 11 - Prob. 11.91QECh. 11 - Prob. 11.93QECh. 11 - Prob. 11.94QECh. 11 - A 1.50-g sample of methanol (CH3OH) is placed in...Ch. 11 - Prob. 11.96QECh. 11 - Prob. 11.97QECh. 11 - Prob. 11.98QECh. 11 - Prob. 11.99QECh. 11 - Prob. 11.100QECh. 11 - Prob. 11.103QE
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry by OpenStax (2015-05-04)
    Chemistry
    ISBN:9781938168390
    Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
    Publisher:OpenStax
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY