EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10.9, Problem 103RP
Reconsider Prob. 10–106E. During winter, the system must supply 2 × 106 Btu/h of heat to the buildings. What is the mass flow rate of air through the air compressor and the system’s total electrical power production in winter?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pls do correct and handwritten only
Why is it important to clean the condenser coils of a household refrigerator a few times a year? Also, why is it important not to block airflow through the condenser coils?
A power plant,having a Carnot efficiency, produces 1.00GW of electrical power from turbines that take in steam at 500K and reject water at 300K into a flowing river. the water downstream is warmer by delta T due to the output of the power plant. Determine the flow rate of the river.
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 10.9 - Why is the Carnot cycle not a realistic model for...Ch. 10.9 - Prob. 2PCh. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - A steady-flow Carnot cycle uses water as the...Ch. 10.9 - Consider a steady-flow Carnot cycle with water as...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - How do actual vapor power cycles differ from...Ch. 10.9 - The entropy of steam increases in actual steam...
Ch. 10.9 - Is it possible to maintain a pressure of 10 kPa in...Ch. 10.9 - 10–12 A steam power plant operates on a simple...Ch. 10.9 - 10–13 Refrigerant-134a is used as the working...Ch. 10.9 - 10–14 A simple ideal Rankine cycle which uses...Ch. 10.9 - 10–15E A simple ideal Rankine cycle with water as...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - Consider a 210-MW steam power plant that operates...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - A steam Rankine cycle operates between the...Ch. 10.9 - Prob. 20PCh. 10.9 - Prob. 21PCh. 10.9 - A simple Rankine cycle uses water as the working...Ch. 10.9 - The net work output and the thermal efficiency for...Ch. 10.9 - A binary geothermal power plant uses geothermal...Ch. 10.9 - Consider a coal-fired steam power plant that...Ch. 10.9 - Show the ideal Rankine cycle with three stages of...Ch. 10.9 - How do the following quantities change when a...Ch. 10.9 - Consider a simple ideal Rankine cycle and an ideal...Ch. 10.9 - An ideal reheat Rankine cycle with water as the...Ch. 10.9 - 10–31 A steam power plant operates on the ideal...Ch. 10.9 - Steam enters the high-pressure turbine of a steam...Ch. 10.9 - 10–34 Consider a steam power plant that operates...Ch. 10.9 - A steam power plant operates on an ideal reheat...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1041 assuming both the pump and the...Ch. 10.9 - Prob. 39PCh. 10.9 - How do open feedwater heaters differ from closed...Ch. 10.9 - How do the following quantities change when the...Ch. 10.9 - Prob. 43PCh. 10.9 - 10–44 The closed feedwater heater of a...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - 10–47 A steam power plant operates on an ideal...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider a steam power plant that operates on the...Ch. 10.9 - Consider an ideal steam regenerative Rankine cycle...Ch. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Repeat Prob. 1060, but replace the open feedwater...Ch. 10.9 - 10–57 An ideal Rankine steam cycle modified with...Ch. 10.9 - Prob. 58PCh. 10.9 - Prob. 59PCh. 10.9 - Prob. 60PCh. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Prob. 63PCh. 10.9 - Prob. 64PCh. 10.9 - The schematic of a single-flash geothermal power...Ch. 10.9 - Prob. 66PCh. 10.9 - Prob. 67PCh. 10.9 - Consider a cogeneration plant for which the...Ch. 10.9 - Prob. 69PCh. 10.9 - A large food-processing plant requires 1.5 lbm/s...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Consider a cogeneration power plant modified with...Ch. 10.9 - Steam is generated in the boiler of a cogeneration...Ch. 10.9 - Prob. 75PCh. 10.9 - Why is the combined gassteam cycle more efficient...Ch. 10.9 - The gas-turbine portion of a combined gassteam...Ch. 10.9 - Prob. 78PCh. 10.9 - Prob. 80PCh. 10.9 - Consider a combined gassteam power plant that has...Ch. 10.9 - Why is steam not an ideal working fluid for vapor...Ch. 10.9 - Prob. 86PCh. 10.9 - What is the difference between the binary vapor...Ch. 10.9 - Why is mercury a suitable working fluid for the...Ch. 10.9 - By writing an energy balance on the heat exchanger...Ch. 10.9 - Steam enters the turbine of a steam power plant...Ch. 10.9 - Prob. 91RPCh. 10.9 - A steam power plant operates on an ideal Rankine...Ch. 10.9 - Consider a steam power plant operating on the...Ch. 10.9 - Consider a steam power plant that operates on a...Ch. 10.9 - Repeat Prob. 1098 assuming both the pump and the...Ch. 10.9 - Consider an ideal reheatregenerative Rankine cycle...Ch. 10.9 - Prob. 97RPCh. 10.9 - Prob. 98RPCh. 10.9 - A textile plant requires 4 kg/s of saturated steam...Ch. 10.9 - Consider a cogeneration power plant that is...Ch. 10.9 - Prob. 101RPCh. 10.9 - Reconsider Prob. 10105E. It has been suggested...Ch. 10.9 - Reconsider Prob. 10106E. During winter, the system...Ch. 10.9 - Prob. 104RPCh. 10.9 - Prob. 105RPCh. 10.9 - Prob. 106RPCh. 10.9 - A steam power plant operates on an ideal...Ch. 10.9 - Show that the thermal efficiency of a combined...Ch. 10.9 - Prob. 113RPCh. 10.9 - Starting with Eq. 1020, show that the exergy...Ch. 10.9 - A solar collector system delivers heat to a power...Ch. 10.9 - Consider a simple ideal Rankine cycle. If the...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Consider a simple ideal Rankine cycle with fixed...Ch. 10.9 - Prob. 120FEPCh. 10.9 - A simple ideal Rankine cycle operates between the...Ch. 10.9 - Prob. 122FEPCh. 10.9 - Prob. 123FEPCh. 10.9 - Consider a combined gas-steam power plant. Water...Ch. 10.9 - Pressurized feedwater in a steam power plant is to...Ch. 10.9 - Consider a steam power plant that operates on the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For a geothermal power plant, the underground hot water thetemperature of 80oC is the source, and the ambient atmospheric air is30oC. Determine the maximum possible thermal efficiency of the powerplant, and the maximum power output if the rate at which energy issupplied is 1 kJ/s.arrow_forwardhow does mechanical efficiency affect net power output calculation of a gas turbine power plant. does it only affect the compressor work. does it have an effect on the net work.arrow_forwardSteam enters the condenser of a steam power plant at 30 kPa, a quality of 91 % and a mass flow rate (m) of 337 kg/min . It leaves the condenser as saturated liquid at 30 kPa. It is to be cooled with water from a nearby river by circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to be heated to a temperature above 5°C. Part A Determine the mass flow rate (m) of the cooling water. Express your answer to the nearest integer. Vol AEo In vec kg/min Submit Request Answer Part B Determine the entropy generation rate (Sgen) in the heat exchanger. Express your answer to three significant figures. vec ? kW/K Submit Request Answer 國arrow_forward
- A refrigerator is used to keep the cold space at 5 °C by rejecting 8 kJ/s of heat by the condenser tothe outdoor air at 25 °C. If the compressor consumes 3 kJ/s of power, determinei. the rate of heat removed from the cold space (kJ/s),ii. the COP of the refrigeratoriii. the minimum power input to the compressor for the same rate of heat removed (kJ/s), andiv. draw the schematic of the refrigerator as a reversed heat engine.arrow_forwardAn air conditioner with refrigerant-134a as the refrigerant is used to keep a large space at 20°C by rejecting the waste heat to the outside air at 37 °C. The room is gaining heat through the walls and the windows at a rate of 125 kJ/min while the heat generated by the computer, TV, and lights amounts to 0.7 kW. Unknown amount of heat is also generated by the people in the room. The condenser and evaporator pressures are 1200 and 500 kPa, respectively. The refrigerant is saturated liguid at the condenser exit and saturated vapor at the compressor inlet. If the refrigerant enters the compressor at a rate of 65 L/min and the isentropic efficiency of the compressor is 70%, determine (a) the temperature of the refrigerant at the compressor exit, (b) the rate of heat generated by the people in the room, (c) the COP of the air conditioner, and (d) the minimum volume flow rate of the refrigerant at the compressor inlet for the same compressor inlet and exit conditions.arrow_forwardA 900-MW powerplant with a thermal efficiency of 0.33 uses oncethrough cooling from a river. Regulations do not permit the discharge back to the river hotter than 5 deg C above the river ambient. Estimate (a) the necessary water flow in kg/s, (b) the reduction (in percent) in this water flow if the plant efficiency is improved by 1 percentage point. Take Cp=4.184 kJ/kg.K for the water.arrow_forward
- A cooling coil removes a total heat load of 41 kW from a conditioned air. The refrigerating unit uses a 10.8-kW compressor. The ambient air around the cooling tower is at 26.15°C and 40% RH. The inlet temperature of the cooling water to the heat exchanger, which allows heat transfer between the refrigerant and the cooling water, is 20°C. If the mass flow rate of the cooling water is 1 kg/s, determine: The exit temperature of the water as it leaves the heat exchanger in C. The efficiency of the cooling tower in %.arrow_forwardA mining company depleted more than half of its ore reserves and is no longer using all of its shaft infrastructure. It considers using one of the old shafts for pumped-storage hydro-electricity generation. This means that water will be pumped to the higher level, which is 1 000 m above the bottom level, at night when Eskom charges lower, off-peak, rates. The “higher level” will be changed into a dam (reservoir) by means of plugs that will be installed in some tunnels. The stored water has potential energy, which will be used to generate electricity for the mine at peak hours, when electricity is expensive. The pump that will be installed at the bottom of the column will also be used as a turbine for the generation of electricity The pump-as-turbine (PAT) must pump water to a height of 1 000 m through a column with an internal diameter (ID) of 345 mm. 3.1. Calculate the velocity of the water in the pipe if the quantity of water to be pumped is 220 litres per second (lps). 3.2.…arrow_forwardRefrigerant-134a enters the condenser of a residential heat pump at 1400 kPa and 65°C at a rate of 0.062 kgis and leaves at 1400 kPa as saturated liquid. If the compressor consumes 1.6 KW of power, determine (a) the COP of the heat pump and (b) the rate of heat absorption from outside air COP 3.651V& QL 4 465 kW COP 6.356 & QL 8.570 kW COP = 5432 & QL 9.653 kW COP 1.346& QL= 2.784 kWarrow_forward
- The heat removal rate from a refrigerated space and the power input to the compressor are 8.5kW and 1.7 respectively. The coefficient of performance of the refrigerantarrow_forwardA steam power plant develops a power output of 2840Kw. Te enthalpy of steam at the inlet if 2500 KJ/kg at500C and at the outlet is as follows: T=200C, dryness factor, x=0.8, hf2=561 KJ/kg and hfg2=1832 K/kg.Calculate the mass flow rate of the steam in kg/sec.arrow_forwardIn 2020, France used 2 400 TWh of energy in total. Nuclear energy supplies 36 % of France's primary energy mix as steam which is used in turn for electricity generation. The efficiency of nuclear power plants is around 40 %.How many EJ of energy (as steam) were supplied by nuclear power plants in France in 2020? How many EJ of electricity were produced by the nuclear power plants in France in 2020?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY