Chemistry
9th Edition
ISBN: 9781133611097
Author: Steven S. Zumdahl
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 119AE
In regions with dry climates, evaporative coolers are used to cool air. A typical electric air conditioner is rated at 1.00 × 104 Btu/h (1 Btu, or British thermal unit = amount of energy to raise the temperature of 1 lb water by 1°F). What quantity of water must be evaporated each hour to dissipate as much heat as a typical electric air conditioner?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Evaporation of sweat requires energy and thus take
excess heat away from the body. Some of the water
that you drink may eventually be converted into sweat
and evaporate. If you drink a 20-ounce bottle of water
(590g) that had been in the refrigerator at 3.8 °C, how
much heat is needed to convert all of that water into
sweat and then to vapor? (Note: Your body
temperature is 36.6 °C. For the purpose of solving this
problem, assume that the thermal properties of sweat
are the same as for water.
Cs, liquid water
4.184 J/g °C
Cs,
1.84 J/g °C
%3D
steam
Cs, ice = 2.09 J/g °C
%3D
AHvap = 40.67 kJ/mol at 36.6 °C.
AHfus = 6.01 kJ/mol
%3D
1413 kJ
81 kJ
1150 kJ
Evaporation of sweat requires energy and thus take
excess heat away from the body. Some of the water
that you drink may eventually be converted into sweat
and evaporate. If you drink a 20-ounce bottle of water
(590g) that had been in the refrigerator at 3.8 °C, how
much heat is needed to convert all of that water into
sweat and then to vapor? (Note: Your body
temperature is 36.6 °C. For the purpose of solving this
problem, assume that the thermal properties of sweat
are the same as for water.
Cliquid water = 4.184 J/g °C
%3D
Csteam= 1.84 J/g °C
Cice = 2.09 J/g °C
AHvap = 40.67 kJ/mol at 36.6 °C.
AHfus = 6.01 kJ/mol
1536 kJ
1414 kJ
141.4 kJ
2530 kJ
Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water (590g) that had been in the refrigerator at 3.8 °C, how much heat is needed to convert all of that water into sweat and then to vapor? (Note: Your body temperature is 36.6 °C. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.
cliquid water = 4.184 J/g °C
csteam= 1.84 J/g °C
cice = 2.09 J/g °C
ΔHvap = 40.67 kJ/mol at 36.6 °C.
ΔHfus = 6.01 kJ/mol
Chapter 10 Solutions
Chemistry
Ch. 10 - What are intermolecular forces? How do they differ...Ch. 10 - Define the following terms and describe how each...Ch. 10 - Compare and contrast solids, liquids, and gases.Ch. 10 - Prob. 4RQCh. 10 - What is a lattice? What is a unit cell? Describe a...Ch. 10 - What is closest packing? What is the difference...Ch. 10 - Describe, in general, the structures of ionic...Ch. 10 - Prob. 9RQCh. 10 - Prob. 10RQCh. 10 - Compare and contrast the phase diagrams of water...
Ch. 10 - It is possible to balance a paper clip on the...Ch. 10 - Consider a sealed container half-filled with...Ch. 10 - Explain the following: You add 100 mL water to a...Ch. 10 - Prob. 4ALQCh. 10 - Prob. 5ALQCh. 10 - Why do liquids have a vapor pressure? Do all...Ch. 10 - Prob. 7ALQCh. 10 - What is the vapor pressure of water at 100C? How...Ch. 10 - Prob. 9ALQCh. 10 - Prob. 10ALQCh. 10 - Prob. 11ALQCh. 10 - In the diagram below, which lines represent the...Ch. 10 - Prob. 14QCh. 10 - Atoms are assumed to touch in closest packed...Ch. 10 - Define critical temperature and critical pressure....Ch. 10 - Use the kinetic molecular theory to explain why a...Ch. 10 - Prob. 18QCh. 10 - Prob. 19QCh. 10 - Describe what is meant by a dynamic equilibrium in...Ch. 10 - Prob. 21QCh. 10 - Prob. 22QCh. 10 - Prob. 23QCh. 10 - Prob. 24QCh. 10 - When wet laundry is hung on a clothesline on a...Ch. 10 - You have three covalent compounds with three very...Ch. 10 - Prob. 28QCh. 10 - Compare and contrast the structures of the...Ch. 10 - Silicon carbide (SiC) is an extremely hard...Ch. 10 - How could you tell experimentally if TiO2 is an...Ch. 10 - A common prank on college campuses is to switch...Ch. 10 - A plot of In (Pvap) versus 1/T (K) is linear with...Ch. 10 - Prob. 34QCh. 10 - Identify the most important types of interparticle...Ch. 10 - Prob. 36ECh. 10 - Predict which substance in each of the following...Ch. 10 - Consider the compounds CI2, HCI. F2, NaF, and HF....Ch. 10 - Prob. 39ECh. 10 - Consider the following electrostatic potential...Ch. 10 - In each of the following groups of substances,...Ch. 10 - Prob. 42ECh. 10 - The shape of the meniscus of water in a glass tube...Ch. 10 - Prob. 44ECh. 10 - Hydrogen peroxide (H2O2) is a syrupy liquid with a...Ch. 10 - Carbon diselenide (CSe2) is a liquid at room...Ch. 10 - X rays from a copper X-ray tube ( = 154 pm) were...Ch. 10 - The second-order diffraction (n = 2) for a gold...Ch. 10 - A topaz crystal has an interplanar spacing (d) of...Ch. 10 - X rays of wavelength 2.63 were used to analyze a...Ch. 10 - Calcium has a cubic closest packed structure as a...Ch. 10 - Nickel has a face-centered cubic unit cell. The...Ch. 10 - A certain form of lead has a cubic closest packed...Ch. 10 - Prob. 54ECh. 10 - You are given a small bar of an unknown metal X....Ch. 10 - A metallic solid with atoms in a face-centered...Ch. 10 - Titanium metal has a body-centered cubic unit...Ch. 10 - Barium has a body-centered cubic structure. If the...Ch. 10 - The radius of gold is 144 pm, and the density is...Ch. 10 - The radius of tungsten is 137 pm and the density...Ch. 10 - What fraction of the total volume of a cubic...Ch. 10 - Iron has a density of 7.86 g/cm3 and crystallizes...Ch. 10 - Prob. 63ECh. 10 - Prob. 64ECh. 10 - Selenium is a semiconductor used in photocopying...Ch. 10 - Prob. 66ECh. 10 - Prob. 67ECh. 10 - Prob. 68ECh. 10 - The structures of some common crystalline...Ch. 10 - The unit cell for nickel arsenide is shown below....Ch. 10 - Cobalt fluoride crystallizes in a closest packed...Ch. 10 - The compounds Na2O, CdS, and ZrI4. all can be...Ch. 10 - What is the formula for the compound that...Ch. 10 - Prob. 74ECh. 10 - A certain metal fluoride crystallizes in such a...Ch. 10 - Prob. 76ECh. 10 - The unit cell of MgO is shown below l Does MgO...Ch. 10 - In solid KCl the smallest distance between the...Ch. 10 - The CsCl structure is a simple cubic array of...Ch. 10 - MnO has either the NaCI type structure or the CsCI...Ch. 10 - What type of solid will each of the following...Ch. 10 - What type of solid will each of the following...Ch. 10 - The memory metal, nitinol, is an alloy of nickel...Ch. 10 - Superalloys have been made of nickel and aluminum....Ch. 10 - Perovskite is a mineral containing calcium,...Ch. 10 - A mineral crystallizes in a cubic closest packed...Ch. 10 - Materials containing the elements Y, Ba, Cu, and O...Ch. 10 - The structures of another class of ceramic,...Ch. 10 - Plot the following data and determine Hvap for...Ch. 10 - From the following data for liquid nitric acid,...Ch. 10 - In Breckenridge, Colorado, the typical atmospheric...Ch. 10 - The temperature inside a pressure cooker is 115C....Ch. 10 - Carbon tetrachloride, CCl4, has a vapor pressure...Ch. 10 - Diethyl ether (CH3CH2OCH2CH3) was one of the first...Ch. 10 - A substance, X, has the following properties:...Ch. 10 - Use the heating-cooling curve below to answer the...Ch. 10 - The molar heat of fusion of sodium metal is 2.60...Ch. 10 - Prob. 98ECh. 10 - What quantity of energy does it take to convert...Ch. 10 - Consider a 75.0-g sample of H2O(g) at 125C. What...Ch. 10 - An ice cube tray contains enough water at 22.0C to...Ch. 10 - A 0.250-g chunk of sodium metal is cautiously...Ch. 10 - Prob. 103ECh. 10 - Prob. 104ECh. 10 - Prob. 105ECh. 10 - Prob. 106ECh. 10 - Prob. 107ECh. 10 - Consider the following data for xenon: Triple...Ch. 10 - Some of the physical properties of H2O and D2O are...Ch. 10 - Rationalize the following boiling points:Ch. 10 - Consider the following vapor pressure versus...Ch. 10 - Consider the following enthalpy changes:...Ch. 10 - Prob. 113AECh. 10 - Boron nitride (BN) exists in two forms. The first...Ch. 10 - Prob. 115AECh. 10 - Argon has a cubic closest packed structure as a...Ch. 10 - Prob. 117AECh. 10 - A 20.0-g sample of ice at 10.0C is mixed with...Ch. 10 - In regions with dry climates, evaporative coolers...Ch. 10 - Which of the following compound(s) exhibit only...Ch. 10 - Which of the following statements about...Ch. 10 - Prob. 123CWPCh. 10 - Aluminum has an atomic radius of 143 pm and forms...Ch. 10 - Pyrolusite is a mineral containing manganese ions...Ch. 10 - The structure of the compound K2O is best...Ch. 10 - Prob. 127CWPCh. 10 - Some ice cubes at 0c with a total mass of 403 g...Ch. 10 - The enthalpy of vaporization for acetone is 32.0...Ch. 10 - Prob. 130CWPCh. 10 - When I mole of benzene is vaporized at a constant...Ch. 10 - You and a friend each synthesize a compound with...Ch. 10 - Prob. 133CPCh. 10 - Prob. 134CPCh. 10 - Consider two different organic compounds, each...Ch. 10 - Rationalize the differences in physical properties...Ch. 10 - Prob. 137CPCh. 10 - Some ionic compounds contain a mixture of...Ch. 10 - Some ionic compounds contain a mixture of...Ch. 10 - Spinel is a mineral that contains 37.9% aluminum,...Ch. 10 - Mn crystallizes in the same type of cubic unit...Ch. 10 - You are asked to help set up a historical display...Ch. 10 - Some water is placed in a sealed glass container...Ch. 10 - The molar enthalpy of vaporization of water at 373...Ch. 10 - Prob. 145CPCh. 10 - Rubidium chloride has the sodium chloride...Ch. 10 - Prob. 147IPCh. 10 - A metal burns in air at 600c under high pressure...Ch. 10 - Prob. 149IPCh. 10 - General Zod has sold Lex Luthor what Zod claims to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventually be converted into sweat and evaporate. If you drink a 20-ounce bottle of water that had been in the refrigerator at 3.8 C, how much heat is needed to convert all of that water into sweat and then to vapor? (Note: Your body temperature is 36.6 oc. For the purpose of solving this problem, assume that the thermal properties of sweat are the same as for water.)arrow_forwardIf 14.5 kJ of heat were added to 485 g of liquid water, how much would its temperature increase?arrow_forwardThe amount of heat required to melt 2 lbs of ice is twice the amount of heat required to melt 1 lb of ice. Is this observation a macroscopic or microscopic description of chemical behavior? Explain your answer.arrow_forward
- Are changes in state physical or chemical changes? Explain. What type of forces must be overcome to melt or vaporize a substance (are these forces intramolecular or intermolecular)? Define the molar heat of fusion and molar heat of vaporization. Why is the molar heat of vaporization of water so much larger than its molar heat of fusion? Why does the boiling point of a liquid vary with altitude?arrow_forward1. Which of the following processes requires the largest input of energy as heat? raising the temperature of 100 g of water by 1.0 °C vaporization of 0.10 g of water at 100 °C melting 1.0 g of ice at 0 °C warming 1.0 g of ice from −50 °C to 0 °C (specific heat of ice = 2.06 J/g · K)arrow_forwardA burning match and a bonfire may have the same temperature, yet you would not sit around a burning match on a fall evening to stay warm. Why not?arrow_forward
- Define the joule in terms of SI base units.arrow_forwardThe enthalpy change when 1 mol methane (CH4) is burned is 890 kJ. It takes 44.0 kJ to vaporize 1 mol water. What mass of methane must be burned to provide the heat needed to vaporize 1.00 g water?arrow_forwardWill a closed container of water at 70 C or an open container of water at the same temperature cool faster on a cold winter day? Explain why.arrow_forward
- If you want to convert 56.0 g ice (at 0 °C) to water at 75.0 °C, calculate how many grams of propane, C3H8, you would have to bum to supply the energy to melt the ice and then warm it to the final temperature (at 1 bar).arrow_forwardThe enthalpy of vaporization of water is larger than its enthalpy of fusion. Explain why.arrow_forwardCalculate the heat capacity, in joules per degree, of 28.4 g of water. Specific heat of water is 4.184 J/g.°C. 119 J/°C. 284 J/°C. 237 J/°C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Types of Matter: Elements, Compounds and Mixtures; Author: Professor Dave Explains;https://www.youtube.com/watch?v=dggHWvFJ8Xs;License: Standard YouTube License, CC-BY