Understanding Our Universe
3rd Edition
ISBN: 9780393614428
Author: PALEN, Stacy, Kay, Laura, Blumenthal, George (george Ray)
Publisher: W.w. Norton & Company,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 6QAP
To determine
The correct order of occurrence of astronomical events.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The first stars to form in our galaxy
a.
had circular orbits.
b.
had highly elliptical orbits.
c.
were population I stars.
d.
all had orbits in the same plane.
e.
formed the galactic clusters we see today.
Read this main idea: The sun is the center of our solar system. Choose three details that go with the main idea.
The sun's gravity holds the planets in place. It provides them with heat and light.
The largest stars, called supergiants, are 1,500 times bigger than our sun.
It takes Earth 365 days to orbit the sun. Jupiter takes 12 years!
Our sun is not the largest or hottest star. It is a medium sized yellow star.
Radio telescopes use radio waves to show stars in great detail.
Astronomers long ago and today use star charts to map star locations.
All of the planets in our solar system revolve around one star-our sun.
Stars can be blue, white, yellow, or red. Blue stars are the hottest.
A reflector telescope bounces star light through mirrors.
The Messier Catalog is
a. a listing of all the stars within the Local Bubble
b. a list of all the HII listings visible without a telescope
c. a list of nebulae, star clusters, and galaxies that might be mistaken for a comet far from the sun
d. a list of regions where dark clouds large numbers of molecules can be found
Chapter 1 Solutions
Understanding Our Universe
Ch. 1.1 - Prob. 1.1CYUCh. 1.2 - Prob. 1.2CYUCh. 1.3 - Prob. 1.3CYUCh. 1 - Prob. 1QAPCh. 1 - Prob. 2QAPCh. 1 - Prob. 3QAPCh. 1 - Prob. 4QAPCh. 1 - Prob. 5QAPCh. 1 - Prob. 6QAPCh. 1 - Prob. 7QAP
Ch. 1 - Prob. 8QAPCh. 1 - Prob. 9QAPCh. 1 - Prob. 10QAPCh. 1 - Prob. 11QAPCh. 1 - Prob. 12QAPCh. 1 - Prob. 13QAPCh. 1 - Prob. 14QAPCh. 1 - Prob. 15QAPCh. 1 - Prob. 16QAPCh. 1 - Prob. 17QAPCh. 1 - Prob. 18QAPCh. 1 - Prob. 19QAPCh. 1 - Prob. 20QAPCh. 1 - Prob. 21QAPCh. 1 - Prob. 22QAPCh. 1 - Prob. 23QAPCh. 1 - Prob. 24QAPCh. 1 - Prob. 25QAPCh. 1 - Prob. 26QAPCh. 1 - Prob. 27QAPCh. 1 - Prob. 28QAPCh. 1 - Prob. 29QAPCh. 1 - Prob. 30QAPCh. 1 - Prob. 31QAPCh. 1 - Prob. 32QAPCh. 1 - Prob. 34QAPCh. 1 - Prob. 35QAPCh. 1 - Prob. 36QAPCh. 1 - Prob. 37QAPCh. 1 - Prob. 38QAPCh. 1 - Prob. 39QAPCh. 1 - Prob. 40QAPCh. 1 - Prob. 41QAPCh. 1 - Prob. 42QAPCh. 1 - Prob. 43QAPCh. 1 - Prob. 44QAPCh. 1 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Based upon the evolution of stars, place the following elements in order of least to most common in the Galaxy: gold, carbon, neon. What aspects of stellar evolution formed the basis for how you ordered the elements?arrow_forwardHow Do We Know? Why is it important that a theory make testable predictions?arrow_forwardAnother explanation for the Universe is the Steady State Hypothesis. The Steady State Hypothesis says that the Universe has always existed and is infinite in extent. Which of the following supports the Big Bang Theory and which supports the Steady State Model. (Select B-Big Bang Theory, S-Steady State Model, If the first is B and the rest S, enter BSSSSS). A) An observation that some globular clusters show M-type stars that have evolved off the main sequence. B) The measurement of redshifts that show galaxies appear to be moving away from each other and the Universe is expanding. C) A measurement that shows the density of the Universe is close to the critical density. D) The measurement of the microwave background radiation. E) Observing that galaxies at very large distances look identical to those in the nearby universe.arrow_forward
- I am trying to calculate the gravitational mass (in solar masses) I have the formula M= V^2 R / G (4.31 x 10^-6) The paperwork says our numbers should be big but I am coming up with .002 etc. What am I doing wrong?arrow_forwardSaturn is approximately 10 times as far away from the sun as the earth. If dark matter changed the orbital properties of the planets so that Saturn had the same orbital speed as the earth, Saturn’s orbital acceleration would be ________ that of the earth.A. 1/10B. 1/100C. 1/1000D. 1/10,000arrow_forward1. Consider our Sun - it is in orbit around the center of our Milky Way Galaxy. The velocity of the Sun in its orbit is about 250 km/s. The distance to the center of the galaxy is about 9.1 kpc (kiloparsecs). We can use Kepler's third law to calculate the mass of the galaxy interior to the Sun's orbit. We assume that the orbit is circular so that the semimajor axis is just the radius of the circular orbit = 9.1 kpc. First we need to calculate the number of AU's in 9.1 kpc. (Note that 1 Крс - 1000 рс - 3260 1t yrs and 1 pc - 206,265 AU.) %3D a =r =9.1kpc = (9.1kpc) 1000 pc 206,265AU] 1kpc AU Sun 1pcarrow_forward
- Why are we unlikely to find Earth-like planets around halo stars in the Galaxy? A. Halo stars formed in a different way from disk stars. B. Planets around stars are known to be extremely rare. C. Halo stars formed in an environment where there were few heavy elements to create rocky planets. D. Halo stars do not have enough mass to hold onto planets. Is the answer C? Since halo stars are formed early when the galaxy consisted of mainly hydrogen and helium, there are no heavier elements available to create Earth-like planets so just halo stars are formed? Thanks!arrow_forwardAStrology: What are the three most common celestial objects a star can become after it can't do nuclear fusion?arrow_forwardHow does the age of the universe relate to the Hubble constant? a. The smaller the constant, the older the universe. b. The larger the constant, the older the universe. c. The Hubble constant is the age of the universe. d. The Hubble constant is the square of the universe. e. It is impossible to tell the age of the universe from the Hubble constant.arrow_forward
- The law of conservation of energy states that energy can be converted from one form to another but cannot be created or destroyed. Therefore, the amount of energy in the universe is constant. In your initial post to the discussion, respond to the following prompts: What do you think would happen if energy were not conserved? Think of (and share) two scenarios in which our lives would be drastically altered if this law of conservation was not in place. At least one of your scenarios should be at the molecular level. Would the implications be positive? Negative? Explain.arrow_forwardWhere does gold (the element) come from? A. It is produced during the supernova explosions of high-mass stars. B. It was produced during the Big Bang. C. It is produced by mass transfer in close binaries. D. It is produced during the late stages of fusion in low-mass stars.arrow_forwardA cloud of dust and gas where a star begins to form: A. Stellar nebula B. Planetary nebula C. Supernova D. Protostararrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY