Understanding Our Universe
3rd Edition
ISBN: 9780393614428
Author: PALEN, Stacy, Kay, Laura, Blumenthal, George (george Ray)
Publisher: W.w. Norton & Company,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1, Problem 21QAP
To determine
The cosmic address of the planet Tau Ceti e.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.
I attempted to answer this question and I'm not sure what I am doing wrong. My formula says A.S. = 206265 (separation/distance from observer)
I know to convert to the same units, so I ended up with 80 Million Km being 8 x 10 ^ -6 LY
Could you please explain each step especially for the part that I got wrong for both A and B?
You have a dream you are driving across the country. In your dream, you leave Kala-
mazoo at 9 a.m. on a tour along 194: you drive to Chicago, Milwaukee, Minneapolis,
and Fargo. You arrive to Fargo at 8 p.m. You spent your entire trip staring out the
window enjoying the sights, and (this is a dream, remember?) you didn't get hurt.
According to the trip counter on your odometer, you have travelled 813 miles on your
trip. The speed limit was between 55 mph and 70 mph on your trip. Were you ever
speeding? Explain your reasoning.
Chapter 1 Solutions
Understanding Our Universe
Ch. 1.1 - Prob. 1.1CYUCh. 1.2 - Prob. 1.2CYUCh. 1.3 - Prob. 1.3CYUCh. 1 - Prob. 1QAPCh. 1 - Prob. 2QAPCh. 1 - Prob. 3QAPCh. 1 - Prob. 4QAPCh. 1 - Prob. 5QAPCh. 1 - Prob. 6QAPCh. 1 - Prob. 7QAP
Ch. 1 - Prob. 8QAPCh. 1 - Prob. 9QAPCh. 1 - Prob. 10QAPCh. 1 - Prob. 11QAPCh. 1 - Prob. 12QAPCh. 1 - Prob. 13QAPCh. 1 - Prob. 14QAPCh. 1 - Prob. 15QAPCh. 1 - Prob. 16QAPCh. 1 - Prob. 17QAPCh. 1 - Prob. 18QAPCh. 1 - Prob. 19QAPCh. 1 - Prob. 20QAPCh. 1 - Prob. 21QAPCh. 1 - Prob. 22QAPCh. 1 - Prob. 23QAPCh. 1 - Prob. 24QAPCh. 1 - Prob. 25QAPCh. 1 - Prob. 26QAPCh. 1 - Prob. 27QAPCh. 1 - Prob. 28QAPCh. 1 - Prob. 29QAPCh. 1 - Prob. 30QAPCh. 1 - Prob. 31QAPCh. 1 - Prob. 32QAPCh. 1 - Prob. 34QAPCh. 1 - Prob. 35QAPCh. 1 - Prob. 36QAPCh. 1 - Prob. 37QAPCh. 1 - Prob. 38QAPCh. 1 - Prob. 39QAPCh. 1 - Prob. 40QAPCh. 1 - Prob. 41QAPCh. 1 - Prob. 42QAPCh. 1 - Prob. 43QAPCh. 1 - Prob. 44QAPCh. 1 - Prob. 45QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- G:06)arrow_forwardThe fictional city of Torontino radially has a population density of 1000e^(−0.01r^2)people per km^2, where r is the radius (in km) from QM tower. What is the total population living within 5 km of the QM tower? Show your steps.arrow_forwardThe difference in absolute magnitude between two objects at the same distance is related to their fluxes by the flux-magnitude relation. FA FB = 2.51(MB − MA) A distant galaxy contains a type I classical Cepheid whose period results in an absolute magnitude estimate of −6.3. If this star were placed next to our Sun (M = +4.8) and you observed them both from the same distance, how much more flux would the Cepheid emit than the Sun? FCepheid FSun = If a galaxy contains a supernova that at its brightest has an apparent magnitude of +11, how far away is the galaxy? Assume that the absolute magnitude of the supernova is −18. Hint: Use the magnitude-distance formula: d = 10(mV − MV + 5)/5 . The hydrogen Balmer line H? has a wavelength of 486.1 nm. It is shifted to 559.7 nm in a quasar's spectrum. What is the redshift of this quasar? (Hint: What is Δ??)arrow_forward
- What is the right ascension in hours, minutes, and seconds of a star at RA 239.768°?arrow_forwarda) Calculate the period of the solar system's orbit around the Milky Way. Assume that we are 8.5 kpc from the galactic center and assume that the mass of the Milky Way interior to our orbit is ~ 10¹¹ solar masses. Alpha Centauri is a multiple star system only 1.34 parsecs away. The apparent magnitudes of the two main stars are: a Cen A: my = +0.01; a Cen B: my = +1.33. b) Calculate the ratio of the flux we receive in the V filter from a Cen A to the flux we receive from a Cen B. c) Calculate the absolute magnitude My of a Cen B.arrow_forwardGreetings , I asked this on Bartleby i got a somewhat straight answer . However I was told it was wrong then I asked what makes their answer wrong and not yours(to person who said Bartleby was wrong ) . Please see photos thanks I'm also having problems with what k subscript 2 = squreroot of 2 m(mass) c^2. That's can't be speed of light it's not in the formula .arrow_forward
- HELLO HELP WITH NUMBER 5 PLEASE, COMPLETE SOLUTION, 4 DECIMAL PLACES. AND GRAPH THANK YOUUarrow_forwardWhat is the value of Tan thetaarrow_forwardgiven: a (distance to center of galaxy in AU) = 1,717,914,439 AU P (suns orbital period in years) = 203,782,828.3 years M (mass of milky way galaxy in solar masses) = 1.22 x 10^11 Msun Question: Assume the Milky Way Galaxy is made up entirely of stars like the Sun, i.e. on average each star has the mass of 1 MSun. Under this assumption, approximately how many stars are there in our galaxy? Express this answer in billions of stars (1 billion = 109).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY