Introduction to Heat Transfer
Introduction to Heat Transfer
6th Edition
ISBN: 9780470501962
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.85P

A solar flux of 700 W/m 2 is incident on a flat-plate solar collector used to heat water. The area of the collector is 3 m 2 , and 90 % of the solar radiation passes through the cover glass and is absorbed by the absorber plate. The remaining 10 % is reflected away from the collector. Water flows through the tube passages on the back side of the absorber plate and is heated from an inlet temperature T i to an outlet temperature To. The cover glass, operating at a temperature of 30 ° C, has an emissivity of 0.94 and experiences radiation exchange with the sky at 10 ° C . The convection coefficient between the cover glass and the ambient air at 25 ° C is 10 W/m 2 K .

Chapter 1, Problem 1.85P, A solar flux of 700W/m2 is incident on a flat-plate solar collector used to heat water. The area of

  1. Perform an overall energy balance on the collector to obtain an expression for the rate at which useful heat is collected per unit area of the collector, q u " . Determine the value of q u " . Calculate the temperature rise of the water, T o T i , if the flow rate is 0.01 kg/s. Assume the specific heat of the water to be 4179 J/kg K . The collector efficiency is defined as the ratio of the useful heat collected to the rate at which solar energy is incident on the collector. What is the value of η ?

Blurred answer
Students have asked these similar questions
A 2 x 2 m flat plate solar collector for domestic hot water heating is shown in the figure. The incident solar radiation on the glass cover, which transmits 90% of the incident flux, is 750 W/m². Water flows through the tubes soldered to the backside of the absorber plate, entering at a temperature of 25°C. The temperature of the glass cover is 27°C, and it radiates heat with an emissivity of 0.92 to the sky at-50°C. Additionally, the glass cover losses heat by convection to air at 20°C flowing over its surface at 30 km/h. Assume that the radiation heat transfer between the absorber plate and glass cover and the heat transfer through the back and sides of the collector is negligible. Circulating Pump Collector Panels -Thermostat Control Hot Water Cold Water Hot Water → Storage Tank with Electric or Gas Back-up Cold Water Air Flow Fig. 1: Solar water heating system (left). Details of the collector panels (right). Air Space O Insulation Nu = 0.036Pr¹/3 (Re0.8 - 23200) For a turbulent…
A hot pipe having a surface temperature of 600 K passes through a room where the temperature is 25deg C. The outside diameter of pipe is 0.15 m and emissivity factor is 0.60. Determine the radiated heat loss for a 5 m pipe length
A flat-plate solar collector, as shown in Fig. 1, is used to heat water by having water flow through tubes attached at the back of the thin solar absorber plate. The absorber plate has an emissivity and an absorptivity of 0.8. The top surface (* = 0) temperature of the absorber is To = 35 °C, and solar radiat ion is incident on the absorber at 600 W/m? with a surrounding temperature of 0 °C. The convection heat transfer coefficient at the absorber surface as 8 W/m?-K. Assuming constant thermal conductivity and no heat generation in the wall, i express the differential equation and the boundary conditions for steady one- dimensional heat conduct ion through the wall, obtain a relation for the variation of temperature in the wall by solving the differential equation, and ii iii. determine the net heat flux, ġo absorbed by the collector ε, α, Τ. Absorber plate Water tubes Insulation Fig. 1

Chapter 1 Solutions

Introduction to Heat Transfer

Ch. 1 - The heat flux that is applied to one face of a...Ch. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - The 5-mm-thick bottom of a 200-mm-diameter pan may...Ch. 1 - Prob. 1.16PCh. 1 - For a boiling process such as shown in Figure...Ch. 1 - You've experienced convection cooling if you've...Ch. 1 - Prob. 1.19PCh. 1 - A wall has inner and outer surface temperatures of...Ch. 1 - An electric resistance heater is embedded in a...Ch. 1 - Prob. 1.22PCh. 1 - A transmission case measures W=0.30m on a side and...Ch. 1 - Prob. 1.24PCh. 1 - A common procedure for measuring the velocity of...Ch. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - An electrical resistor is connected to a battery,...Ch. 1 - Pressurized water pin=10bar,Tin=110C enters the...Ch. 1 - Consider the tube and inlet conditions of Problem...Ch. 1 - An internally reversible refrigerator has a...Ch. 1 - A household refrigerator operates with cold- and...Ch. 1 - Chips of width L=15mm on a side are mounted to a...Ch. 1 - Consider the transmission case of Problem 1.23,...Ch. 1 - One method for growing thin silicon sheets for...Ch. 1 - Heat is transferred by radiation and convection...Ch. 1 - Radioactive wastes are packed in a long,...Ch. 1 - An aluminum plate 4 mm thick is mounted in a...Ch. 1 - A blood warmer is to be used during the...Ch. 1 - Consider a carton of milk that is refrigerated at...Ch. 1 - The energy consumption associated with a home...Ch. 1 - Liquid oxygen, which hems a boiling point of 90 K...Ch. 1 - The emissivity of galvanized steel sheet, a common...Ch. 1 - Three electric resistance heaters of length...Ch. 1 - A hair dryer may be idealized as a circular duct...Ch. 1 - In one stage of an annealing process, 304...Ch. 1 - Convection ovens operate on the principle of...Ch. 1 - Annealing, an important step in semiconductor...Ch. 1 - In the thermal processing of semiconductor...Ch. 1 - A furnace for processing semiconductor materials...Ch. 1 - Single fuel cells such as the one of Example 1.5...Ch. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - A small sphere of reference-grade iron with a...Ch. 1 - A 50mm45mm20mm cell phone charger has a surface...Ch. 1 - A spherical, stainless steel (AISI 302) canister...Ch. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - A photovoltaic panel of dimension 2m4m is...Ch. 1 - Following the hot vacuum forming of a paper-pulp...Ch. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - The roof of a car in a parking lot absorbs a solar...Ch. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Consider Problem 1.1. If the exposed cold surface...Ch. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - A thin electrical heating element provides a...Ch. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - The curing process of Example 1.9 involves...Ch. 1 - The diameter and surface emissivity of an...Ch. 1 - Bus bars proposed for use in a power transmission...Ch. 1 - A solar flux of 700W/m2 is incident on a...Ch. 1 - In considering the following problems involving...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY