Biochemistry
9th Edition
ISBN: 9781319114671
Author: Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Question
The free energy released by the hydrolysis of ATP under standard conditions is −30.5 kJ/mol. If ATP is hydrolyzed under standard conditions except
at pH 5.0, is more or less free energy released? Explain.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- Using your stock solution of 2 M glucose, you need to prepare the following series of glucose solutions for use in an experiment 0.8; 1.5, 1.75 and 2 M. Complete the table to show how you would dilute the sucrose to make 100ml of each of the solutions above.arrow_forwardConsider the following equilibrium at 25ºC :Glucose-1-Phosphate Glucose-6-PhophateUsing the equilibrium concentrations of [Glucose-1-Phosphate] = 0.35 M and [Glucose-6-Phosphate] = 1.65 M, calculate BOTH K′eqand Gº′ for this reaction. Is this reaction exergonicor endergonic? R = 8.314 J/K·molarrow_forwardCalculate AG for the reaction G+ H I + J when [G] = 0.0132 mM, [H] = 35.1 uM, [1] = 55.6 uM, [J] 18.7 uM, the temperature = 37 °C and AG°= -48.2 kJ/mol. Keep concentration units in uM. -50.3 kJ/mol -39.1 kJ/mol O-46 kJ/mol -25.8 kJ/molarrow_forward
- A particular reaction has a ΔG‡ of 37.0 kJ mol-1. In the presence of an enzyme, the same reaction has a ΔG‡ of 5.70 kJ mol-1. Calculate the value of ΔΔG‡ in kJ mol-1.arrow_forwardConsider the following reaction and its equilibrium constant: 12(g) 21(g) Kp = 0.209 atm A reaction mixture contains 0.89 atm 12 and 1.77 atm I. Which of the following statements is TRUE concerning this system?arrow_forwardDescribe how you would make the following solution containing two enzymes. 1 mL total volume in Buffer X with 10nM of enzyme A and 50nM of enzyme B You are given a solution of enzyme A at 1 mg/mL and a solution of enzyme B at 1 mg/mL. The molecular weight of enzyme A is 75,000 g/mol and the molecular weight of enzyme B is 130,000 g/mol.arrow_forward
- The ΔG°′ value for glucose-1-phosphate is -20.9 kJ/mol. If glucose and phosphate are both at 4.8 mM, what is the equilibrium concentration of glucose-1-phosphate?arrow_forwardThe formation constants at 25°C for Fe(CN)4-6 and Fe(EDTA)2– are 1.00 x 1037 and 2.10 x 1014, respectively. Answer the questions below. 1) Calculate K under standard conditions for the reaction Fe(EDTA)2−(aq) + 6CN−(aq) ----> Fe(CN)4−6(aq) + EDTA4−(aq) 2) Calculate ΔG° for the reaction. (kJ/mol)arrow_forwardA particular reaction has a ΔG‡ of 30.0 kJ mol-1 at 25.0 °C. In the presence of an enzyme, the same reaction has a ΔG‡ of 1.50 kJ mol-1 at the same temperature. Calculate the rate enhancement of this enzyme. (R = 8.3145 J mol-1 K-1)arrow_forward
- In many biochemical reactions which involves the formation of an enolate intermediate, the carbonyl oxygen of the substrate is coordinated to a divalent metal ion (usually zinc or magnesium) in the active site. Explain with structural drawings, how this ion-dipole interactions affect the acidity of the a-protons?arrow_forwardCalculate theequilibrium constant and thefree energy of (Mg)ATP hydrolysis in a closed system in which concentrations of ATP, ADP and Piare, respectively, 3.5, 1.0, and 5 mMand 25 degrees Celsius. Is the reaction spontaneous?R = 8.314 J/(deg Kelvin-mol).arrow_forwardOnly 15-14arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON