College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Liquid helium has a very low boiling point, 4.2 K, as well as a low latent heat of vaporization, equal to 2.09 x 104 J/kg. If energy is transferred to a container of liquid helium at the boiling point from an immersed electric heater at a rate of 10.0 W, how long does it take to boil away 2.00 kg of the liquid?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A perfectly insulated, sealed chamber has a fixed volume of 25.4 m³, and is filled with an ideal monatomic gas. This monatomic gas has a temperature of 25 °C and a pressure of 1.26 × 105 Pa. A 1.00 kg block of ice at its melting point is placed within the chamber, after which the chamber is immediately sealed again. The latent heat of fusion Lf of water is 3.34 × 105 J/kg and the specific heat c of water is 4186 J/kg.K. What is the equilibrium temperature Teq?arrow_forwardAn ideal gas is heated at a constant pressure of 1.80 x 10 Pa from a temperature of -73.0°C to a temperature of +27.0°C. The initial volume of the gas is 0.100 m³. The heat energy supplied to the gas in this process is 40.0 kJ. What is the increase in internal energy of the gas? -8.95:kJarrow_forwardAn uninsulated container holds 3.5 mol of an ideal gas at an initial temperature of 300 K. The gas is compressed by a movable piston, and 500 J of work is done on the gas while being compressed. If the final temperature of the gas is 400 K, how much heat flows in or out of the gas during this process?arrow_forward
- You have a spherical heater, outside diameter = 3.40 cm, immersed in a container of water. In order to keep the water in the container heated to a constant temperature of 35.0°C you adjust the temperature of the spherical heater. You reach a steady-state condition when the surface temperature of the spherical heater is at 79.0°C. Assuming the electrical efficiency of the heater is 100.0%, calculate the power required by the heater (i.e., calculate q). Ignore radiation.arrow_forwardA cylinder container is divided into two equal sections by thermally isolated, frictionless piston,as shown in the figure. One section contains water and the other air. The cylinder is isolated except the one face of the water section. Each section has an initial volume of 100 liter. The initial temperature of the air is 40 degees C and the water is 90 degrees C with steam quality of 10%. The water are heated slowly until the entire section of the water is filled with saturated steam. Find the final pressure and the amount of heat transported to the container. Assume: the heat transfer is a reversible process. Assume for ideal gas the following relation between p and v: (p2/p1)^((k-1)/k) = (v1/v2)^k-1 ; k=1.4arrow_forwardA student decides to conduct an experiment by using two different flasks and two different gas samples. In flask 1, there exists Neon (Ne) gas, whereas the second flask is filled with nitrogen (N2) gas. If both flasks are kept at 270 K, answer the following questions. (Note: Molar mass of N2 = 28.014 g mol1,molar mass of Neon = 20.1797 g mol, R= 8.31 J. mol1.K1, k=1.38 x 1023 J.K-1, Avogadro's number = 6.02 x 1023 mol1.) a) Find the average kinetic energy of one Neon molecule. b) Calculate the average kinetic energy (translational+rotational) of one nitrogen molecule by including rotational motion in your calculations. c) Find the root-mean-square speed of one neon molecule. V ms1 Checkarrow_forward
- The "steam" above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot coffee. What is the final temperature of 205 g of hot coffee initially at 98.0°C if 3.18 g evaporates from it? The coffee is in a Styrofoam cup, and so other methods of heat transfer can be neglected. Assume that coffee has the same physical properties as water; its latent heat of vaporization is 539 kcal/kg and its specific heat is 1.00 kcal/(kg · °C).arrow_forwardWater with a mass of mW = 0.400 kg and temperature of TW = 15.5°C is poured into an insulated bucket containing mI = 0.19 kg of ice at a temperature of TI = -15°C. Assume the specific heats of ice and water are constant at cI = 2.10×103 J/(kg⋅°C) and cW = 4.19×103 J/(kg⋅°C), respectively. The latent heat of fusion for water is Lf = 334×103 J/kg. Part (a) What is the final temperature of the mixture, in degrees Celsius? Tfinal = Part (b) Enter an expression for the mass of ice, in kilograms, that has melted when the mixture reaches its final temperature. mmelt = Part (c) Calculate how much ice, in kilograms, has melted when the mixture reaches its final temperature. mmelt =arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON