College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Jill takes in 0.0270 mol of air in a single breath. The air is taken in at 20.0°C and exhaled at 35.0°C.
A) How much heat leaves her body in a single breath due to the temperature increase of the air? Ignore the humidification of the air in the lungs and treat air as an ideal diatomic gas. Universal gas constant is 8.314 J/mol·K. in j
B) Her respiration rate is 14 breaths per minute. At what average rate does heat leave her body due to the temperature increase of the air? in W
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A canister with a piston contains 1.05 kg of air at 30.0°C and 1.25 x 105 Pa. Energy is transferred by heat into the system as it expands and the pressure rises to 4.25 x 105 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = cv1/2) where C is a constant. Air may be modeled as a diatomic ideal gas with a molar mass of M = 28.9 g/mol. Determine the following. (a) initial volume (in m3) 0.01477 The ideal gas law may be used to describe the air in any state, Since we want the initial volume, we should use the pressure and temperature for the initial state. How can you determine the number of moles of air from the total mass and the molar mass? m3 (b) final volume (in m) m3 (c) final temperature (in K) K (d) work done on the air (in J) (e) energy transferred by heat (Enter the magnitude in MJ.) MJarrow_forward10. A container with a movable piston holds 2.00 moles of a monatomic ideal gas at a pressure of 3.0 × 105 N/m2 in a volume of 0.018 m3 . (a) What is the temperature of the gas? (b) The gas undergoes an isothermal expansion to a volume of 0.027 m3 . How much work does the gas do during this expansion? (c) How much heat flows into or out of the gas during this expansion? Does it flow into or out of the gas?arrow_forwardAn Expanding Monatomic Gas We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 134 °C. The gas expands and, in the process, absorbs an amount of heat equal to 1280 J and does an amount of work Part A equal to 2000J. What is the final temperature Tfinal of the gas? Use R = 8.3145 J/(mol · K) for the ideal gas constant. View Available Hint(s) ΠΥΠ ΑΣφ ? Trinal °C Submit Request Answerarrow_forward
- A gas in a cylinder is held at a constant pressure of 2.20×105 Pa and is cooled and compressed from 1.90 m3 to 1.10 m3 . The internal energy of the gas decreases by 1.15×105 J. a) Find the work done by the gas. Express your answer in joules b)Find the amount of the heat that flowed into or out of the gas. Express your answer in joules to two significant figures. c) State the direction (inward or outward) of the flow.arrow_forward6. 3.00 moles of Argon, a monatomic ideal gas, occupies a volume of 12.0 L at a temperature equal to 25.0° C. The gas then undergoes an isobaric expansion to 16.0 L. What is the heat absorbed by the gas? a. 3.25 kJ b. 5.17 kJ с. 6.19 kJ d. 7.38 kJ е. 8.60 kJarrow_forwardEstilos Edición P5. A rigid container contains water vapor at 250°C and an unknown pressure. When the container cools to 150°C, the vapor begins to condense. Estimate the initial pressure in the container. Plot the thermodynamic process on a phase diagram. Answer: 600 kPa.arrow_forward
- An ideal diatomic gas initially has a pressure of 5 2.00x10^5Pa, a volume of 4.00m^3 and a temperature of 27 C . It has an adiabatic change in pressure to 6.00x10^5 Pa. a. What are the new volume and temperature? b. What is the change in internal energy of the gas?arrow_forwardA sealed ideal gas system contains 2.0 moles of monatomic ideal gas, initially at temperature 300 K and pressure 1.2 atm. The system is allowed to expand isothermally to five times its original volume. How much heat is transferred into the system during this process? 7.09 kJ 11.2 kJ 8.03 kJ Zero 4.97 kJarrow_forwardYou would like to raise the temperature of an ideal gas from 295 K to 960 K in an adiabatic process. a)What compression ratio will do the job for a monatomic gas? b)What compression ratio will do the job for a diatomic gas?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON