
Principles of Foundation Engineering (MindTap Course List)
8th Edition
ISBN: 9781305081550
Author: Braja M. Das
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:For the gravity concrete dam shown in the figure, the following data are available:
- Unit weight of concrete (Yeone) = 2.4 ton/m³
Neglect( Wave pressure, silt pressure, ice force and earth quake force)
-0.65, (Ywater) 1 ton/m³
Find factor of safety against sliding and overturning (F.Said & F.Sover), If heel and toe stresses (Pais &
Pmas) are 57.17ton/m2 and 84.53 ton/m² respectively.
w.s.l
83m
10m
80m
8m
Solve on paper step by
step with sketch
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Similar questions
- A planned flexible load area (see Figure P7.2) is to be 3 m × 4.6 m and carries a uniformly distributed load of 180 kN/m2. Estimate the elastic settlement below the center of the loaded area. Assume that Df = 2 m and H = . Use Eq. (7.4).arrow_forwardThe tie rods from anchored sheet piles will be connected using a row of anchors, as shown in Figure 18.46a. Here H = 2.0 m, h = 1.25 m, B = 1.5 m, S = 2.5 m, = 32, and = 17.5 kN/m3. The anchor plates are made of 100 mm thick reinforced concrete with a unit weight of 24.0 kN/m3. Determine the ultimate holding capacity of the anchor used Ovesen and Stromanns method.arrow_forwardRefer to Figure 10.43. A strip load of q = 1450 lb/ft2 is applied over a width with B = 48 ft. Determine the increase in vertical stress at point A located z = 21 ft below the surface. Given x = 28.8 ft. Figure 10.43arrow_forward
- Refer to Figure 5.2. Given: B = L = 1.75 m, Df = 1 m, H = 1.75 m, = 17 kN/m3, c = 0, and = 30. Using Eq. (5.6) and FS = 4, determine the gross allowable load the foundation can carry.arrow_forwardThe soil profile at a site consists of 10 m of gravelly sand underlain by a soft clay layer. The water table lies 1 m below the ground level. The moist and saturated unit weights of the gravelly sand are 17.0 kN/m3 and 20.0 kN/m3, respectively. Due to some ongoing construction work, it is proposed to lower the water table to 3 m below the ground level. What will be the change in the effective stress on top of the soft clay layer?arrow_forwardUse Eq. (6.14) to determine the stress increase () at z = 10 ft below the center of the area described in Problem 6.5. 6.5 Refer to Figure 6.6, which shows a flexible rectangular area. Given: B1 = 4 ft, B2 = 6 ft, L1, = 8 ft, and L2 = 10 ft. If the area is subjected to a uniform load of 3000 lb/ft2, determine the stress increase at a depth of 10 ft located immediately below point O. Figure 6.6 Stress below any point of a loaded flexible rectangular areaarrow_forward
- Consider a continuous foundation of width B = 1.4 m on a sand deposit with c = 0, = 38, and = 17.5 kN/m3. The foundation is subjected to an eccentrically inclined load (see Figure 6.33). Given: load eccentricity e = 0.15 m, Df = 1 m, and load inclination = 18. Estimate the failure load Qu(ei) per unit length of the foundation a. for a partially compensated type of loading [Eq. (6.89)] b. for a reinforced type of loading [Eq. (6.90)]arrow_forwardA 20 m long concrete pile is shown in Figure P12.2. Estimate the ultimate point load Qp by a. Meyerhofs method b. Vesics method c. Coyle and Castellos method Use m = 600 in Eq. (12.28).arrow_forwardRepeat Problem 5.1 with the following data: B = 1.5 m, L = 1.5 m, Df = 1 m, H = 0.6 m, = 35, c = 0, and = 15 kN/m3. Use FS = 3. Refer to Figure 5.2 and consider a rectangular foundation. Given: B = 1.5 m, L = 2.5 m, Df = 1.2 m, H = 0.9 m, = 40, c = 0, and = 17 kN/m3. Using a factor of safety of 3, determine the gross allowable load the foundation can carry. Use Eq. (5.3).arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning

Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Construction Materials, Methods and Techniques (M...
Civil Engineering
ISBN:9781305086272
Author:William P. Spence, Eva Kultermann
Publisher:Cengage Learning