A stream of 100 kmol/h of a binary mixture of Acetone and Methanol contains 45 mol% of the most volatile and needs to be distilled to provide solutions of its components in high purity. A continuous column of dishes with reflux (fractional distillation) will be used for the service, where the mixture will be fed as a saturated liquid. It is desired to obtain a liquid solution of the most volatile with 95% in mol as the top product. Thus, a total capacitor will be used. As a bottom product, 90% by mol of the least volatile should be obtained. The column will be operated at about 1atm. A reflux ratio of 3 mol fed back for each mol of distillate withdrawn will be used. Using the McCabe-Thiele method, one asks: a) What is the distillate output from the column? What is the bottom of the column production? b) How many equilibrium stages would the column have? How many ideal dishes would be needed for the service? In that case, what would be the number of the feeding plate? c) If we used a partial condenser, how many ideal dishes would be needed for the service? In that case, what would be the number of the feeding plate?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question

A stream of 100 kmol/h of a binary mixture of Acetone and Methanol contains 45 mol% of the most volatile and needs to be distilled to provide solutions of its components in high purity. A continuous column of dishes with reflux (fractional distillation) will be used for the service, where the mixture will be fed as a saturated liquid. It is desired to obtain a liquid solution of the most volatile with 95% in mol as the top product. Thus, a total capacitor will be used. As a bottom product, 90% by mol of the least volatile should be obtained. The column will be operated at about 1atm. A reflux ratio of 3 mol fed back for each mol of distillate withdrawn will be used. Using the McCabe-Thiele method, one asks:

a) What is the distillate output from the column? What is the bottom of the column production?

b) How many equilibrium stages would the column have? How many ideal dishes would be needed for the service? In that case, what would be the number of the feeding plate?

c) If we used a partial condenser, how many ideal dishes would be needed for the service? In that case, what would be the number of the feeding plate?

1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
Transcribed Image Text:1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The