The vapor leaving the top of a distillation column goes to a condenser in which either total or partial condensation takes place. If a total condenser is used, a portion of the condensate is returned to the top of the column as refux and the remaining liquid is taken off as the overhead product (or distillate). If a partial condenser is used, the liquid condensate is returned as reflux and the uncondensed vapor is taken off as the overhead product. The overhead product from an n-butane-n-pentane distillation column is 93 mole% butane. The temperature of the cooling fluid limits the condenser temperature to 39 °C or higher. REFLUX DRUM a) Using Raoult's law, estimate the minimum pressure at which the condenser can operate as a partial condenser (i.e., at which it can produce liquid for reflux) b) The production rate of overhead product is 50 kmol/h, and the mole ratio of reflux to overhead product is 2:1. Calculate the molar flow rates and compositions of the reflux stream and the vapor feed to the condenser. Vapor from top of column Reflux [liquid) PARTIAL CONDENSER & Cooling fluid Overhead product (vapor)

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
The vapor leaving the top of a distillation
column goes to a condenser in which either
total or partial condensation takes place. If
a total condenser is used, a portion of the
condensate is returned to the top of the
column as refcr and the remaining liquid
is taken off as the overhead product (or
distillate). If a partial condenser is used, the liquid condensate is returned as reflux and the
uncondensed vapor is taken off as the overhead product. The overhead product from an
n-butane-n-pentane distillation column is 93 mole% butane. The temperature of the
cooling fluid limits the condenser temperature to 39 °C or higher.
REFLUX DRUM
a) Using Raoult's law, estimate the minimum pressure at which the condenser can operate
as a partial condenser (i.e., at which it can produce liquid for reflux)
b) The production rate of overhead product is 50 kmol/h, and the mole ratio of reflux to
overhead product is 2:1. Calculate the molar flow rates and compositions of the reflux
stream and the vapor feed to the condenser.
Vapor from
top of column
Reflux
(liquid)
PARTIAL
CONDENSER
- Cooling fluid
Overhead
product (vapor)
Transcribed Image Text:The vapor leaving the top of a distillation column goes to a condenser in which either total or partial condensation takes place. If a total condenser is used, a portion of the condensate is returned to the top of the column as refcr and the remaining liquid is taken off as the overhead product (or distillate). If a partial condenser is used, the liquid condensate is returned as reflux and the uncondensed vapor is taken off as the overhead product. The overhead product from an n-butane-n-pentane distillation column is 93 mole% butane. The temperature of the cooling fluid limits the condenser temperature to 39 °C or higher. REFLUX DRUM a) Using Raoult's law, estimate the minimum pressure at which the condenser can operate as a partial condenser (i.e., at which it can produce liquid for reflux) b) The production rate of overhead product is 50 kmol/h, and the mole ratio of reflux to overhead product is 2:1. Calculate the molar flow rates and compositions of the reflux stream and the vapor feed to the condenser. Vapor from top of column Reflux (liquid) PARTIAL CONDENSER - Cooling fluid Overhead product (vapor)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 9 images

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The