College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter P.5, Problem 20P
To determine
The distance from the front of the door to the first quiet spot.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
high-frequency sound waves exhibit less diffraction than low-frequency sound waves do. However, even high frequency sound waves exhibit much more diffraction under normal circumstances than do light waves that pass through the same opening. The highest frequency that a healthy ear can typically hear is 2.0 × 104 Hz. Assume that a sound wave with this frequency travels at 344 m/s and passes through a doorway that has a width of 0.95 m. (a) Determine the angle that locates the first minimum to either side of the central maximum in the diffraction pattern for the sound. (b) Suppose that yellow light (wavelength = 567 nm, in vacuum) passes through a doorway and that the first dark fringe in its diffraction pattern is located at the angle determined in part (a). How wide would this hypothetical doorway have to be?
An engineer, investigating the behavior of radio waves, builds a box 7.20 m long. Inside the box at one end is a small radio
transmitter that emits radiation with a wavelength of 0.120 m. A receiver is placed at the other end, 7.20 m away. Assume both
the transmitter and the receiver are on the floor of the box.
The walls and floor of the box interior are treated to minimize reflection of radio waves. The ceiling of the box interior, however, is
metal, so the radio waves can reflect off of it almost perfectly. The radio waves can take two paths from the transmitter to the
receiver: a straight-line path, and a path that reflects off the ceiling of the box interior. Note that there is a phase shift when the
waves reflect off the ceiling.
(a) What is the minimum (nonzero) height of the box ceiling (in m) that could produce destructive interference between the
direct and reflected waves at the receiver's location?
(b) What If? Some modern Wi-Fi antennas emit frequencies in the 5 GHz band.…
You shine a monochromatic red light of frequency 4.30 x 10^14 Hz into a flint glass. What are the frequency and wavelength of this light in the material?
Chapter P Solutions
College Physics: A Strategic Approach (4th Edition)
Ch. P.1 - Prob. 1PCh. P.1 - The following questions are related to the passage...Ch. P.1 - The following questions are related to the passage...Ch. P.1 - Prob. 4PCh. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - Animal Athletes Different animals have very...Ch. P.1 - The drag force on an object moving in a liquid is...
Ch. P.1 - The drag force on an object moving in a liquid is...Ch. P.1 - Sticky Liquids BIO The drag force on an object...Ch. P.1 - The drag force on an object moving in a liquid is...Ch. P.2 - Prob. 1PCh. P.2 - Prob. 2PCh. P.2 - Prob. 3PCh. P.2 - Prob. 4PCh. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - The following passages and associated questions...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Testing Tennis Balls Tennis balls are tested by...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Squid Propulsion Squid usually move by using their...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Teeing Off A golf club has a lightweight flexible...Ch. P.2 - Additional Integrated Problems Football players...Ch. P.2 - Additional Integrated Problems The unit of...Ch. P.2 - Additional Integrated Problems A 100 kg football...Ch. P.2 - Additional Integrated Problems A swift blow with...Ch. P.2 - Additional Integrated Problems A childs sled has...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Size and Life Physicists look for simple models...Ch. P.3 - Prob. 6PCh. P.3 - Prob. 7PCh. P.3 - Prob. 8PCh. P.3 - Prob. 9PCh. P.3 - Prob. 10PCh. P.3 - Prob. 11PCh. P.3 - Prob. 12PCh. P.3 - Prob. 13PCh. P.3 - Prob. 14PCh. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Passenger Balloons Long-distance balloon flights...Ch. P.3 - Prob. 18PCh. P.3 - Prob. 19PCh. P.3 - Prob. 20PCh. P.3 - Prob. 21PCh. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Waves in the Earth and the Ocean In December 2004,...Ch. P.4 - Prob. 6PCh. P.4 - Prob. 7PCh. P.4 - Prob. 8PCh. P.4 - Prob. 9PCh. P.4 - Prob. 10PCh. P.4 - Prob. 11PCh. P.4 - Prob. 12PCh. P.4 - Prob. 13PCh. P.4 - Prob. 14PCh. P.4 - Prob. 15PCh. P.4 - Prob. 16PCh. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - In the Swing A rope swing is hung from a tree...Ch. P.4 - Additional Integrated Problems The jumping gait of...Ch. P.4 - Prob. 21PCh. P.5 - Scanning Confocal Microscopy Although modern...Ch. P.5 - If, because of a poor-quality objective, the light...Ch. P.5 - The resolution of a scanning confocal microscope...Ch. P.5 - Prob. 4PCh. P.5 - In a horses eye, the image of a close object will...Ch. P.5 - Prob. 6PCh. P.5 - A horse is looking straight ahead at a person who...Ch. P.5 - Prob. 8PCh. P.5 - Prob. 9PCh. P.5 - Prob. 13PCh. P.5 - The pupil of your eye is smaller in bright light...Ch. P.5 - People with good vision can make out an...Ch. P.5 - Prob. 19PCh. P.5 - Prob. 20PCh. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - The Greenhouse Effect and Global Warming...Ch. P.6 - Prob. 6PCh. P.6 - Prob. 7PCh. P.6 - The following passages and associated questions...Ch. P.6 - Prob. 9PCh. P.6 - Prob. 10PCh. P.6 - Prob. 11PCh. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Electric Cars In recent years, practical hybrid...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Wireless Power Transmission Your laptop has...Ch. P.6 - Additional Integrated Problems 20. A 20 resistor...Ch. P.6 - Prob. 21PCh. P.7 - Prob. 1PCh. P.7 - Prob. 2PCh. P.7 - Prob. 3PCh. P.7 - Prob. 4PCh. P.7 - Prob. 5PCh. P.7 - Prob. 6PCh. P.7 - Prob. 7PCh. P.7 - Prob. 8PCh. P.7 - Prob. 9PCh. P.7 - Prob. 10PCh. P.7 - Prob. 11PCh. P.7 - Prob. 12PCh. P.7 - Prob. 13PCh. P.7 - Prob. 14PCh. P.7 - Prob. 15PCh. P.7 - Prob. 16PCh. P.7 - Prob. 17PCh. P.7 - Prob. 18PCh. P.7 - Many speculative plans for spaceships capable of...Ch. P.7 - A muon is a lepton that is a higher-mass (rest...Ch. P.7 - A muon is a lepton that is a higher-mass (rest...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P24.69 shows a radio-wave transmitter and a receiver, both h = 50.0 m above the ground and d = 6.00 102 m apart. The receiver can receive signals directly from the transmitter and indirectly from signals that bounce off the ground. If the ground is level between the transmitter and receiver and a /2 phase shift occurs upon reflection, determine the longest wavelengths that interior (a) constructively and (b) destructively. Figure P24.69arrow_forwardAstronauts placed a mirror on the surface of the Moon to be used for optical measurements of the precise distance to the moon. Visible light is sent from the Earth and is reflected back from the moon. If the mirror has a diameter of 30 cm, roughly how large is the beam of reflected light that reaches Earth? The distance from the Earth to the Moon is 3.8×108 meters. You can assume the light from Earth is a plane wave when it strikes the mirror.arrow_forwardIn a physics lab, light with wavelength 490 nm travels in air from a laser to a photocell in 17.0 ns. When a slab of glass 0.840 m thick is placed in the light beam, with the beam incident along the normal to the parallel faces of the slab, it takes the light 21.2 ns to travel from the laser to the photocell. What is the wavelength of the light in the glass?arrow_forward
- Light has wavelength 600 nm in a vacuum. It passes into glass, which has an index of refraction of 1.50. What is the frequency of the light inside the glass? 3.3X10^14 Hz 5.0X10^14 Hz 3.3X10^5 Hz 5.0X10^5 Hzarrow_forwardThe wavelength of red helium-neon laser light in air is 632.8 nm. (a) What is its frequency? Hz (b) What is its wavelength in glass that has an index of refraction of 1.62? nm (c) What is its speed in the glass? Mm/sarrow_forwardTwo radio antennas separated by d = 272 m as shown in the figure below simultaneously broadcast identical signals at the same wavelength. A car travels due north along a straight line at position x = 1150 m from the center point between the antennas, and its radio receives the signals. Note: Do not use the small-angle approximation in this problem. d (a) If the car is at the position of the second maximum after that at point O when it has traveled a distance y = 400 m northward, what is the wavelength of the signals? m (b) How much farther must the car travel from this position to encounter the next minimum in reception? marrow_forward
- (a) A sheet of a certain type of glass is transparent but tinted red. To measure its light-absorbing properties, beams of monochromatic light from two different lasers are shined through the glass. One laser emits red light with a wavelength of 630 nm, while the other emits blue light with a wavelength of 460 nm. What is the frequency of the light emitted (in Hz) from each laser? red ? Hz blue ? Hz (b) The glass absorbs 73.0% of the energy of the blue light; that is, the intensity of the blue light just after exiting the glass is 27.0% of the intensity just before entering. (The sheet of glass is thin and the laser beam narrow, so the intensity change is not due to any widening of the beam.) Find the ratio of the amplitude of the blue light's electromagnetic wave before entering the glass to the amplitude after exiting the glass. Emax, f Emax, i = ?arrow_forwardLight of wavelength 650 nm (in air) enters the water in a swimming pool. The speed of light in water is 75% of the speed in air. What is the wavelength of the light in water?arrow_forwardAs Section 17.3 discusses, high-frequency sound waves exhibit less diffraction than low-frequency sound waves do. However, even high frequency sound waves exhibit much more diffraction under normal circumstances than do light waves that pass through the same opening. The highest frequency that a healthy ear can typically hear is 2.0 x 104 Hz. Assume that a sound wave with this frequency travels at 341 m/s and passes through a doorway that has a width of 1.1 m. (a) Determine the angle that locates the first minimum to either side of the central maximum in the diffraction pattern for the sound. (b) Suppose that yellow light (wavelength = 579 nm, in vacuum) passes through a doorway and that the first dark fringe in its diffraction pattern is located at the angle determined in part (a). How wide would this hypothetical doorway have to be? (a) Number i Units (b) Number i Unitsarrow_forward
- The entrance to a large lecture room consists of two side-by-side doors, one hinged on the left, and the other hinged on the right. Each door is 0.790 m wide. Sound of frequency 870 Hz is coming through the entrance from within the room. Take the speed of sound to be 340 m/s. What is the diffraction angle of the sound after it passes through the doorway when one door is open.arrow_forwardLight with a frequency of 5.80 x 1014 Hz travels in a block of glass that has an index of refraction of 1.52. What is the wavelength of the light (a) in vacuum and (b) in the glass?arrow_forwardLight with a frequency of 5.80 * 10^14 Hz travels in a block of glass that has an index of refraction of 1.52. What is the wavelength of the light (a) in vacuum and (b) in the glass?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY