To calculate: The quotient and remainder when the polynomial
Answer to Problem 7AYU
The quotient is
Explanation of Solution
Given information:
The polynomial
Formula used:
When a polynomial is divided by its factor then dividend is the product of divisor and quotient increased by remainder.
Calculation:
Consider the provided polynomial
To divide the polynomial
Here dividend is
Step 1: List down the coefficients of dividend in the descending powers of x, that are
Now, the divisor is of the form
Step 2: To perform the synthetic division put the coefficients in the division sign along with 3 on the left side,
Step 3: Bring down 3 to in third row,
Step 4: Multiply 3 with the first entry of row 3 and place the result in row 2 column 2.
Step 5: Now, add the elements of column 2 of row 1 and row 2.
Step 6: Multiply 3 with the second entry of row 3 and place the result in row 2 column 3.
Step 7: Now, add the elements of column 3 of row 1 and row 2.
Step 8: Multiply 3 with the third entry of row 3 and place the result in row 2 column 4.
Step 9: Now, add the elements of column 4 of row 1 and row 2.
Now, the first three elements of row 3 are coefficients of quotient in descending powers of x with degree one less than dividend and the last entry is remainder.
Therefore, quotient is
Now, when a polynomial is divided by its divisor then dividend is the product of divisor and quotient increased by remainder.
To verify multiply the terms on the right hand side,
Thus, the quotient is
Chapter A Solutions
Precalculus
Additional Math Textbook Solutions
Elementary Statistics
Introductory Statistics
A First Course in Probability (10th Edition)
Thinking Mathematically (6th Edition)
Elementary Statistics (13th Edition)
- Pls help me asap pls plsarrow_forwardExercise 1 Given are the following planes: plane 1: 3x4y+z = 1 0 plane 2: (s, t) = ( 2 ) + ( -2 5 s+ 0 ( 3 t 2 -2 a) Find for both planes the Hessian normal form and for plane 1 in addition the parameter form. b) Use the cross product of the two normal vectors to show that the planes intersect in a line. c) Calculate the intersection line. d) Calculate the intersection angle of the planes. Make a sketch to indicate which angle you are calculating.arrow_forwardOnly 100% sure experts solve it correct complete solutions okarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning