To expand: the expression
Answer to Problem 37E
Explanation of Solution
Concept Used:
Pascal’s triangle:
The nth row of Pascal’s triangle gives the coefficients of
Consider the given expression
First use fourth row of Pascal’s triangle to evaluate
The binomial coefficients from the fourth row of Pascal’s Triangle are 1, 4, 6, 4, 1.
(Since here the binomial is representing difference rather than sum, so the signs will be alternate)
So, the expansion is:
Now, use second row of Pascal’s triangle to evaluate
The binomial coefficients from the second row of Pascal’s Triangle are 1, 2, 1.
(Since here the binomial is representing difference rather than sum, so the signs will be alternate)
So, the expansion is:
Thus,
Chapter 9 Solutions
EBK PRECALCULUS W/LIMITS
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning