An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9.4, Problem 1PQ
To determine
Reason for food to be heated up in a microwave oven.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is it that only electrons near EF contribute to the electrical and thermal conductivity? Explain briefly in your own words.
Discuss the difference between conductors and insulators. Give an example of a material that acts as a conductor and a material that acts as an insulator
A bulb delivers 33 W of radiant energy when its filament is at 1900 °C . If the temperature increases by 100 °C , what is the new rate of energy radiated by this bulb?
O 39.51 W
36.11 W
O 27.56 W
O 40.52 W
Chapter 9 Solutions
An Introduction to Physical Science
Ch. 9.1 - Prob. 1PQCh. 9.1 - Prob. 2PQCh. 9.2 - Prob. 1PQCh. 9.2 - Prob. 2PQCh. 9.2 - Prob. 9.1CECh. 9.3 - Prob. 1PQCh. 9.3 - When does a hydrogen atom emit or absorb radiant...Ch. 9.3 - Prob. 9.2CECh. 9.3 - Prob. 9.3CECh. 9.3 - Prob. 9.4CE
Ch. 9.4 - Prob. 1PQCh. 9.4 - Prob. 2PQCh. 9.5 - Prob. 1PQCh. 9.5 - Prob. 2PQCh. 9.6 - Prob. 1PQCh. 9.6 - Prob. 2PQCh. 9.6 - Prob. 9.5CECh. 9.7 - Prob. 1PQCh. 9.7 - Prob. 2PQCh. 9 - Prob. AMCh. 9 - Prob. BMCh. 9 - Prob. CMCh. 9 - Prob. DMCh. 9 - Prob. EMCh. 9 - Prob. FMCh. 9 - Prob. GMCh. 9 - Prob. HMCh. 9 - Prob. IMCh. 9 - Prob. JMCh. 9 - Prob. KMCh. 9 - Prob. LMCh. 9 - Prob. MMCh. 9 - Prob. NMCh. 9 - Prob. OMCh. 9 - Prob. PMCh. 9 - Prob. QMCh. 9 - Prob. 1MCCh. 9 - Prob. 2MCCh. 9 - Prob. 3MCCh. 9 - Prob. 4MCCh. 9 - Prob. 5MCCh. 9 - Prob. 6MCCh. 9 - Prob. 7MCCh. 9 - Prob. 8MCCh. 9 - Prob. 9MCCh. 9 - Prob. 10MCCh. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 1FIBCh. 9 - Prob. 2FIBCh. 9 - Prob. 3FIBCh. 9 - Prob. 4FIBCh. 9 - Prob. 5FIBCh. 9 - Prob. 6FIBCh. 9 - Prob. 7FIBCh. 9 - Prob. 8FIBCh. 9 - Prob. 9FIBCh. 9 - Prob. 10FIBCh. 9 - Prob. 11FIBCh. 9 - Prob. 12FIBCh. 9 - Prob. 1SACh. 9 - Prob. 2SACh. 9 - Prob. 3SACh. 9 - Prob. 4SACh. 9 - Prob. 5SACh. 9 - Prob. 6SACh. 9 - Prob. 7SACh. 9 - Prob. 8SACh. 9 - Prob. 9SACh. 9 - Prob. 10SACh. 9 - Prob. 11SACh. 9 - Prob. 12SACh. 9 - Prob. 13SACh. 9 - Prob. 14SACh. 9 - Prob. 15SACh. 9 - Prob. 16SACh. 9 - Prob. 17SACh. 9 - Prob. 18SACh. 9 - Prob. 19SACh. 9 - Prob. 20SACh. 9 - Prob. 21SACh. 9 - Prob. 22SACh. 9 - Prob. 23SACh. 9 - Prob. 24SACh. 9 - Prob. 25SACh. 9 - Prob. 26SACh. 9 - Prob. 27SACh. 9 - Prob. 28SACh. 9 - Prob. 29SACh. 9 - Prob. 30SACh. 9 - Prob. 31SACh. 9 - Prob. 32SACh. 9 - Prob. 33SACh. 9 - Prob. 34SACh. 9 - Visualize the connection for the descriptions of...Ch. 9 - Prob. 1AYKCh. 9 - Prob. 2AYKCh. 9 - Prob. 3AYKCh. 9 - Prob. 4AYKCh. 9 - Prob. 5AYKCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A resistor in the form of a carbon cylinder is connected to the voltage source. As the temperature of the cylinder increases, does the electrical power it consumes increase or decrease? Explain.arrow_forwardA close analogy exists between the flow of energy by heat because of a temperature difference (see Section 19.6) and the flow of electric charge because of a potential difference. In a metal, energy dQ and electrical charge dq are both transported by free electrons. Consequently, a good electrical conductor is usually a good thermal conductor as well. Consider a thin conducting slab of thickness dx, area A, and electrical conductivity , with a potential difference dV between opposite faces. (a) Show that the current I = dq/dt is given by the equation on the left: ChargeconductionThermalconductiondqdt=A|dVdx|dQdt=kA|dTdx| In the analogous thermal conduction equation on the right (Eq. 19.17), the rate dQ/dt of energy flow by heat (in SI units of joules per second) is due to a temperature gradient dT/dx in a material of thermal conductivity k. (b) State analogous rules relating the direction of the electric current to the change in potential and relating the direction of energy flow to the change in temperature.arrow_forwardIt is often claimed that you should leave the heating system in your house on all the time rather than turning it off when you are not home because it takes more energy to heat the house back to its normal temperature. What do you think? True or False?arrow_forward
- Heat is the flow of energy from one object to another due to O volume differences. surface area differences. differences in the number of electrons. O temperature differences.arrow_forwardB2arrow_forwardIn the illustration below, suppose a moving rod is 0.14 m long, the velocity v is 255 cm/s, the total resistance of the loop is 0.036 Ω, and the magnetic field is 9168 G. Find the force acting on the rod. Final answer should be in two (2) decimal places. For the final answer, express the unit in symbols. For example: 5.00 Kelvin should be expressed as 5.00 K DO NOT answer in exponential form Units are case sensitive, sample units: N/m, degree C, m^2 Round your answer into the nearest 2 decimal place.arrow_forward
- how do you know if the material is a conductor/insulator?arrow_forwardCurrent has a heating effect due to the law of conservation of energy. A sealed container containing ice is connected across a supply having a voltage V. If the current / is flowing through the connection, which of the following equations can solve the time needed to change the ice to water? Let m be the mass of the ice and Lfbe the latent heat of fusion of the ice. Ot = VImLf VI t = mLf t = VI O The answer cannot be found on the other choices.arrow_forwardCurrent has a heating effect due to the law of conservation of energy. A sealed container containing a liquid is connected across a supply having a voltage V. If the current / is flowing through the connection, which of the following equations can solve the time needed to change the liquid to steam? Let m be the mass of the liquid and Ly be the latent heat of vaporization of the liquid. mlv t = VI Ot = VImLv VI t = mLv O The answer cannot be found on the other choices.arrow_forward
- What is the percent increase in the energy radiated by a person with a average body temperature of 40°C (104°F) versus when they have a normal temperature of 37°C (98.6°F)? Assume that the person's emmisivity does not change.arrow_forwardIgnoring trace elements, a typical elemental composition (by mass) of the human body is as follows: 10.5 % H 66.3 % O 19.9 % C 3.3 % N Use these percentages, the molar mass values, Avogadro's number, and the atomic numbers to determine the total number of electrons (and protons) in a 73-kg human body (160 pounds). If these electrons and protons were placed 100 m apart (the distance of approximately one football field), then what would be the force of electrical attraction between them.arrow_forwardWill save this response. Question 3 of 45 Question 3 Note: Round off your answer to the nearest whole number. Input the numerical value only. Problem. A composite wire to be used as an integral component of a switch in an electrical device is composed of wire A and wire B. The wire has effective linear expansion coefficient of 0.000024 per Celsius-degree. What percentage of the total length of the composite wire is wire B? The linear expansion coefficient of wire A is 0.000011 per Celsius-degree. The linear expansion coefficient of wire B is 0.000035 per Celsius-degree.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill