An Introduction to Physical Science
14th Edition
ISBN: 9781305079137
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 10MC
To determine
The option which describes the limitations on measurements.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the value of the uncertainty in the energy of the excited state of an atom when
the electron is lived in excited state for 8.4x10 s.
A) 1.33×10-34 J
B) 6.28x10-33 J
C) 3.28×10-22 J
D) 2.68×10-30 J
The decay energy of a short-lived nuclear excited state has an uncertainty of 2.1 eV due to its short lifetime. What is the smallest lifetime (in s) it can have?
____s
Need help with this question
Chapter 9 Solutions
An Introduction to Physical Science
Ch. 9.1 - Prob. 1PQCh. 9.1 - Prob. 2PQCh. 9.2 - Prob. 1PQCh. 9.2 - Prob. 2PQCh. 9.2 - Prob. 9.1CECh. 9.3 - Prob. 1PQCh. 9.3 - When does a hydrogen atom emit or absorb radiant...Ch. 9.3 - Prob. 9.2CECh. 9.3 - Prob. 9.3CECh. 9.3 - Prob. 9.4CE
Ch. 9.4 - Prob. 1PQCh. 9.4 - Prob. 2PQCh. 9.5 - Prob. 1PQCh. 9.5 - Prob. 2PQCh. 9.6 - Prob. 1PQCh. 9.6 - Prob. 2PQCh. 9.6 - Prob. 9.5CECh. 9.7 - Prob. 1PQCh. 9.7 - Prob. 2PQCh. 9 - Prob. AMCh. 9 - Prob. BMCh. 9 - Prob. CMCh. 9 - Prob. DMCh. 9 - Prob. EMCh. 9 - Prob. FMCh. 9 - Prob. GMCh. 9 - Prob. HMCh. 9 - Prob. IMCh. 9 - Prob. JMCh. 9 - Prob. KMCh. 9 - Prob. LMCh. 9 - Prob. MMCh. 9 - Prob. NMCh. 9 - Prob. OMCh. 9 - Prob. PMCh. 9 - Prob. QMCh. 9 - Prob. 1MCCh. 9 - Prob. 2MCCh. 9 - Prob. 3MCCh. 9 - Prob. 4MCCh. 9 - Prob. 5MCCh. 9 - Prob. 6MCCh. 9 - Prob. 7MCCh. 9 - Prob. 8MCCh. 9 - Prob. 9MCCh. 9 - Prob. 10MCCh. 9 - Prob. 11MCCh. 9 - Prob. 12MCCh. 9 - Prob. 13MCCh. 9 - Prob. 14MCCh. 9 - Prob. 1FIBCh. 9 - Prob. 2FIBCh. 9 - Prob. 3FIBCh. 9 - Prob. 4FIBCh. 9 - Prob. 5FIBCh. 9 - Prob. 6FIBCh. 9 - Prob. 7FIBCh. 9 - Prob. 8FIBCh. 9 - Prob. 9FIBCh. 9 - Prob. 10FIBCh. 9 - Prob. 11FIBCh. 9 - Prob. 12FIBCh. 9 - Prob. 1SACh. 9 - Prob. 2SACh. 9 - Prob. 3SACh. 9 - Prob. 4SACh. 9 - Prob. 5SACh. 9 - Prob. 6SACh. 9 - Prob. 7SACh. 9 - Prob. 8SACh. 9 - Prob. 9SACh. 9 - Prob. 10SACh. 9 - Prob. 11SACh. 9 - Prob. 12SACh. 9 - Prob. 13SACh. 9 - Prob. 14SACh. 9 - Prob. 15SACh. 9 - Prob. 16SACh. 9 - Prob. 17SACh. 9 - Prob. 18SACh. 9 - Prob. 19SACh. 9 - Prob. 20SACh. 9 - Prob. 21SACh. 9 - Prob. 22SACh. 9 - Prob. 23SACh. 9 - Prob. 24SACh. 9 - Prob. 25SACh. 9 - Prob. 26SACh. 9 - Prob. 27SACh. 9 - Prob. 28SACh. 9 - Prob. 29SACh. 9 - Prob. 30SACh. 9 - Prob. 31SACh. 9 - Prob. 32SACh. 9 - Prob. 33SACh. 9 - Prob. 34SACh. 9 - Visualize the connection for the descriptions of...Ch. 9 - Prob. 1AYKCh. 9 - Prob. 2AYKCh. 9 - Prob. 3AYKCh. 9 - Prob. 4AYKCh. 9 - Prob. 5AYKCh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The mass of an electron is 9.11 10-31 kg.A.) If the wavelength of an electron is 4.67 10-7 m, how fast is it moving?1557.457391 m/s B.) If an electron has a speed equal to 5.30 106 m/s, what is its wavelength?1.37232566e-10 marrow_forwardAnswer all questions in handwritingarrow_forwardBe sure to answer all parts. Consider the following energy levels of a hypothetical atom: E4-2.51 × 10-19 J E3-5.01 10-19 J E2 -1.25 x 10-18 J E₁-1.85 × 10-18 J (a) What is the wavelength of the photon needed to excite an electron from E₁ to E4? x 10 (b) What is the energy (in joules) a photon must have in order to excite an electron from E₂ to E3? x 10 m x 10 J (c) When an electron drops from the E3 level to the E₁ level, the atom is said to undergo emission. Calculate the wavelength of the photon emitted in this process. marrow_forward
- 5. An electron ( me = 9.11 × 10−31 kg ) and a bullet ( m = 0.02 kg) each have a velocity of magnitude 500 m/s, with a precision within 0.01%. In what limits is it possible to determine the position of objects along the velocity direction?What can you conclude from comparing your results for the electron and for thebullet?arrow_forwardI am struggling with getting this question done and need some help solving it, explain and make sure the answer is 100% correct. When a fast electron (i.e., one moving at a relativistic speed) passes by a heavy atom, it interacts with the atom's electric field. As a result, the electron's kinetic energy is reduced; the electron slows down. In the meantime, a photon of light is emitted. The kinetic energy lost by the electron equals the energy Eγ�� of a photon of radiated light: Eγ=K−K′��=�−�′, where K� and K′�′ are the kinetic energies of the electron before and after radiation, respectively. This kind of radiation is called bremsstrahlung radiation, which in German means "braking radiation" or "deceleration radiation." The highest energy of a radiated photon corresponds to the moment when the electron is completely stopped. Part A. Given an electron beam whose electrons have kinetic energy of 4.00 keVkeV , what is the minimum wavelength λmin�min of light radiated by such beam…arrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607x10−17J·s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? A bacterium with a mass of 9.0 pg, 6.0 µm long, moving at 9.00 µm/s. A mosquito with a mass of 2.3 mg, 6.0 mm long, moving at 3.0 m/s. A paper airplane with a mass of 5.9 g, 295. mm long, moving at 3.7 m/s. A car with a mass of 2000. kg, 4.4 m long, moving at 81.0 km/h.arrow_forward
- A 83.0 kg athlete running a "4-minute mile" (i.e. 4.00 min/mile) _____ nm an electron (me = 9.10939 1028 g) moving at 3.90 106 m/s in an electron microscope _____ nm.arrow_forward3. A molecule in its first excited state will spontaneously decay to the ground state by emitting a photon. For two samples of two different molecules the lifetime, t, of this process is 11 ps and 3.5 ns. Calculate the minimum FWHM, I, of the resulting spectral lines of the two samples. Explain your answer in terms of the uncertainty principle.arrow_forward10.2 A photon with a wavelength of 525 nm strikes an electron, which then moves with a speed of 2.00×105 m/s. What is the new wavelength of the photon that is scattered by the Compton effect? Bold text startarrow_forward
- 9 An atom in an excited state contains more of what type of energy than the same atom in the ground state? A B mass-energy C thermal energy (Ε kinetic energy D gravitational potential energy E electric potential energyarrow_forwardWhat are aspects of quantum mechanics that distinguish it from classical mechanics? (Select all that apply) a) Particles and waves b) Particle-wave duality c) Discrete energy levels at the atomic scale d) Experimental uncertainty e) Observational uncertainty What was the primary innovation of the Bohr atomic model? a) Atomic composition was composed of positively and negatively charged particles b) Atomic structure invoked a small, central nucleus and diffuse, floating electrons c) Electron orbits occurred at fixed radii corresponding to quantized angular momentum d) Electron orbits had different shapes based on quantum numbering e) Electrons could share quantum numbersarrow_forwardAn x-ray is produced by electrons accelerated under a voltage of 11.6 kV. What is the shortest wavelength of the generated x-rays? Express your answer in picometers with one (1) decimal place.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College